半单泊松-李群的对偶与g局部系统模空间的聚类理论

Li-Chien Shen
{"title":"半单泊松-李群的对偶与g局部系统模空间的聚类理论","authors":"Li-Chien Shen","doi":"10.1093/IMRN/RNAB094","DOIUrl":null,"url":null,"abstract":"We study the dual ${\\rm G}^\\ast$ of a standard semisimple Poisson-Lie group ${\\rm G}$ from a perspective of cluster theory. We show that the coordinate ring $\\mathcal{O}({\\rm G}^\\ast)$ can be naturally embedded into a cluster Poisson algebra with a Weyl group action. We prove that $\\mathcal{O}({\\rm G}^\\ast)$ admits a natural basis which has positive integer structure coefficients and satisfies an invariance property with respect to a braid group action. We continue the study of the moduli space $\\mathscr{P}_{{\\rm G},\\mathbb{S}}$ of ${\\rm G}$-local systems introduced in \\cite{GS3}, and prove that the coordinate ring of $\\mathscr{P}_{{\\rm G}, \\mathbb{S}}$ coincides with its underlying cluster Poisson algebra.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Duals of Semisimple Poisson–Lie Groups and Cluster Theory of Moduli Spaces of G-local Systems\",\"authors\":\"Li-Chien Shen\",\"doi\":\"10.1093/IMRN/RNAB094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dual ${\\\\rm G}^\\\\ast$ of a standard semisimple Poisson-Lie group ${\\\\rm G}$ from a perspective of cluster theory. We show that the coordinate ring $\\\\mathcal{O}({\\\\rm G}^\\\\ast)$ can be naturally embedded into a cluster Poisson algebra with a Weyl group action. We prove that $\\\\mathcal{O}({\\\\rm G}^\\\\ast)$ admits a natural basis which has positive integer structure coefficients and satisfies an invariance property with respect to a braid group action. We continue the study of the moduli space $\\\\mathscr{P}_{{\\\\rm G},\\\\mathbb{S}}$ of ${\\\\rm G}$-local systems introduced in \\\\cite{GS3}, and prove that the coordinate ring of $\\\\mathscr{P}_{{\\\\rm G}, \\\\mathbb{S}}$ coincides with its underlying cluster Poisson algebra.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

从聚类理论的角度研究了标准半简单泊松-李群${\rm G}$的对偶${\rm G}^\ast$。我们证明了坐标环$\mathcal{O}({\rm G}^\ast)$可以自然嵌入到具有Weyl群作用的聚类泊松代数中。证明了$\mathcal{O}({\rm G}^\ast)$存在一个具有正整数结构系数的自然基,它满足辫群作用的不变性。我们继续研究了\cite{GS3}中引入的${\rm G}$ -局部系统的模空间$\mathscr{P}_{{\rm G},\mathbb{S}}$,并证明了$\mathscr{P}_{{\rm G}, \mathbb{S}}$的坐标环与其底层的聚类泊松代数重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duals of Semisimple Poisson–Lie Groups and Cluster Theory of Moduli Spaces of G-local Systems
We study the dual ${\rm G}^\ast$ of a standard semisimple Poisson-Lie group ${\rm G}$ from a perspective of cluster theory. We show that the coordinate ring $\mathcal{O}({\rm G}^\ast)$ can be naturally embedded into a cluster Poisson algebra with a Weyl group action. We prove that $\mathcal{O}({\rm G}^\ast)$ admits a natural basis which has positive integer structure coefficients and satisfies an invariance property with respect to a braid group action. We continue the study of the moduli space $\mathscr{P}_{{\rm G},\mathbb{S}}$ of ${\rm G}$-local systems introduced in \cite{GS3}, and prove that the coordinate ring of $\mathscr{P}_{{\rm G}, \mathbb{S}}$ coincides with its underlying cluster Poisson algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信