A. Zabidi, W. Mansor, L. Khuan, I. Yassin, R. Sahak
{"title":"基于Mel频率倒谱系数计算的三维粒子游优化和多层感知器神经网络的窒息婴儿哭声分类","authors":"A. Zabidi, W. Mansor, L. Khuan, I. Yassin, R. Sahak","doi":"10.1109/ICCAIE.2011.6162147","DOIUrl":null,"url":null,"abstract":"The performance Mel Frequency Cepstrum Coefficient (MFCC) in extracting significant feature is influence by several important parameter settings, namely the number of filter banks, and the number of coefficients used in the final representation. These settings affect the way the features are represented, and in turn, effect the performance of the classifier for diagnosis of the disease. Particle Swarm Optimization (PSO) algorithm is used in this work to adjust the parameters of the MFCC feature extraction method, together with the Multi-Layer Perceptron (MLP) classifier structure for diagnosis of infants with asphyxia. The extracted MFCC features were then used to train several MLP classifiers over different initialization values. The simultaneous optimization of MFCC parameters and MLP structure using PSO yielded 93.9% of classification accuracy.","PeriodicalId":132155,"journal":{"name":"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Three-dimensional particle swam optimisation of Mel Frequency Cepstrum Coefficient computation and Multilayer Perceptron neural network for classifying asphyxiated infant cry\",\"authors\":\"A. Zabidi, W. Mansor, L. Khuan, I. Yassin, R. Sahak\",\"doi\":\"10.1109/ICCAIE.2011.6162147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance Mel Frequency Cepstrum Coefficient (MFCC) in extracting significant feature is influence by several important parameter settings, namely the number of filter banks, and the number of coefficients used in the final representation. These settings affect the way the features are represented, and in turn, effect the performance of the classifier for diagnosis of the disease. Particle Swarm Optimization (PSO) algorithm is used in this work to adjust the parameters of the MFCC feature extraction method, together with the Multi-Layer Perceptron (MLP) classifier structure for diagnosis of infants with asphyxia. The extracted MFCC features were then used to train several MLP classifiers over different initialization values. The simultaneous optimization of MFCC parameters and MLP structure using PSO yielded 93.9% of classification accuracy.\",\"PeriodicalId\":132155,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIE.2011.6162147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIE.2011.6162147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-dimensional particle swam optimisation of Mel Frequency Cepstrum Coefficient computation and Multilayer Perceptron neural network for classifying asphyxiated infant cry
The performance Mel Frequency Cepstrum Coefficient (MFCC) in extracting significant feature is influence by several important parameter settings, namely the number of filter banks, and the number of coefficients used in the final representation. These settings affect the way the features are represented, and in turn, effect the performance of the classifier for diagnosis of the disease. Particle Swarm Optimization (PSO) algorithm is used in this work to adjust the parameters of the MFCC feature extraction method, together with the Multi-Layer Perceptron (MLP) classifier structure for diagnosis of infants with asphyxia. The extracted MFCC features were then used to train several MLP classifiers over different initialization values. The simultaneous optimization of MFCC parameters and MLP structure using PSO yielded 93.9% of classification accuracy.