图像编码使用参数纹理合成

Uday Singh Thakur, Bappaditya Ray
{"title":"图像编码使用参数纹理合成","authors":"Uday Singh Thakur, Bappaditya Ray","doi":"10.1109/MMSP.2016.7813339","DOIUrl":null,"url":null,"abstract":"Visual textures like grass, water etc. consist of dense and random variations in contrast that are perceptually indistinguishable by a human eye. Such textures are costly to encode using image and video codecs. For example, in the state-of-the-art compression standard High Efficiency Video Coding (HEVC), detailed textures typically show relatively strong blurring artifacts at low rates (high QPs). Texture synthesis is a process whereby one can obtain a reconstruction of a visually equivalent texture with decent visual quality, given a set of parameters. In this paper, texture synthesis is used as a tool in combination with HEVC, exploiting Human Visual Perception (HVP) properties by creating an artificial textured content using model parameters at the decoder side. A novel scheme for compression (prediction and quantization) of parameters for complex wavelet based texture synthesis is introduced. The compressed parameters are sufficient to synthesize high quality texture content at the decoder side. Simulation results have shown, that with same rates, both the subjective and the objective quality is enhanced, compared to HEVC.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image coding using parametric texture synthesis\",\"authors\":\"Uday Singh Thakur, Bappaditya Ray\",\"doi\":\"10.1109/MMSP.2016.7813339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual textures like grass, water etc. consist of dense and random variations in contrast that are perceptually indistinguishable by a human eye. Such textures are costly to encode using image and video codecs. For example, in the state-of-the-art compression standard High Efficiency Video Coding (HEVC), detailed textures typically show relatively strong blurring artifacts at low rates (high QPs). Texture synthesis is a process whereby one can obtain a reconstruction of a visually equivalent texture with decent visual quality, given a set of parameters. In this paper, texture synthesis is used as a tool in combination with HEVC, exploiting Human Visual Perception (HVP) properties by creating an artificial textured content using model parameters at the decoder side. A novel scheme for compression (prediction and quantization) of parameters for complex wavelet based texture synthesis is introduced. The compressed parameters are sufficient to synthesize high quality texture content at the decoder side. Simulation results have shown, that with same rates, both the subjective and the objective quality is enhanced, compared to HEVC.\",\"PeriodicalId\":113192,\"journal\":{\"name\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2016.7813339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

视觉纹理,如草,水等,由密集和随机变化的对比度组成,人眼无法感知。使用图像和视频编解码器对这种纹理进行编码的成本很高。例如,在最先进的压缩标准高效视频编码(HEVC)中,细节纹理通常在低速率(高QPs)下显示相对较强的模糊伪影。纹理合成是在给定一组参数的情况下,获得具有良好视觉质量的视觉等效纹理的重建过程。本文将纹理合成作为一种工具,与HEVC相结合,利用人类视觉感知(HVP)属性,在解码器侧使用模型参数创建人工纹理内容。提出了一种新的基于复小波的纹理合成参数压缩(预测和量化)方案。压缩后的参数足以在解码器侧合成高质量的纹理内容。仿真结果表明,与HEVC相比,在相同的速率下,主观和客观质量都得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image coding using parametric texture synthesis
Visual textures like grass, water etc. consist of dense and random variations in contrast that are perceptually indistinguishable by a human eye. Such textures are costly to encode using image and video codecs. For example, in the state-of-the-art compression standard High Efficiency Video Coding (HEVC), detailed textures typically show relatively strong blurring artifacts at low rates (high QPs). Texture synthesis is a process whereby one can obtain a reconstruction of a visually equivalent texture with decent visual quality, given a set of parameters. In this paper, texture synthesis is used as a tool in combination with HEVC, exploiting Human Visual Perception (HVP) properties by creating an artificial textured content using model parameters at the decoder side. A novel scheme for compression (prediction and quantization) of parameters for complex wavelet based texture synthesis is introduced. The compressed parameters are sufficient to synthesize high quality texture content at the decoder side. Simulation results have shown, that with same rates, both the subjective and the objective quality is enhanced, compared to HEVC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信