基于MPS方法的燃料熔化和熔融迁移数值研究

Z. Lei, Jian Deng, Wei Li, Xiaoli Wu, Deng Chunrui
{"title":"基于MPS方法的燃料熔化和熔融迁移数值研究","authors":"Z. Lei, Jian Deng, Wei Li, Xiaoli Wu, Deng Chunrui","doi":"10.1115/icone2020-16806","DOIUrl":null,"url":null,"abstract":"\n Core melting and molten migration behavior are hot and difficult issues in the field of nuclear reactor severe accident research. The Moving Particle Semi-implicit (MPS) meshless method has potential to simulate free-surface and multiphase flows. In this study, the MPS method was utilized to simulate the melting process of UO2-Zr rod-type fuel elements. The models of heat conduction with phase change, simplified UO2-Zr eutectic reaction, viscous flow and surface tension were implemented with the framework of standard MPS method. Then, the improved MPS code was used to simulate and analyze the process of high-temperature melting and characteristics of molten migration and solidification in the coolant channel, aiming at revealing the severe accidents for light water reactors (LWR), particularly the early core damage. The results showed that compared with the case of higher initial temperature, when the initial temperature of molten UO2 is lower, more molten UO2 will solidify on the surface of rod cluster, and the blockage of upper flow channel caused by molten UO2 is more serious. In addition, this study also demonstrated the potential of the MPS method for the study of complicated severe accident phenomena in not only traditional LWR but also advanced nuclear reactors in the future.","PeriodicalId":414088,"journal":{"name":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Fuel Melting and Molten Migration Based on the MPS Method\",\"authors\":\"Z. Lei, Jian Deng, Wei Li, Xiaoli Wu, Deng Chunrui\",\"doi\":\"10.1115/icone2020-16806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Core melting and molten migration behavior are hot and difficult issues in the field of nuclear reactor severe accident research. The Moving Particle Semi-implicit (MPS) meshless method has potential to simulate free-surface and multiphase flows. In this study, the MPS method was utilized to simulate the melting process of UO2-Zr rod-type fuel elements. The models of heat conduction with phase change, simplified UO2-Zr eutectic reaction, viscous flow and surface tension were implemented with the framework of standard MPS method. Then, the improved MPS code was used to simulate and analyze the process of high-temperature melting and characteristics of molten migration and solidification in the coolant channel, aiming at revealing the severe accidents for light water reactors (LWR), particularly the early core damage. The results showed that compared with the case of higher initial temperature, when the initial temperature of molten UO2 is lower, more molten UO2 will solidify on the surface of rod cluster, and the blockage of upper flow channel caused by molten UO2 is more serious. In addition, this study also demonstrated the potential of the MPS method for the study of complicated severe accident phenomena in not only traditional LWR but also advanced nuclear reactors in the future.\",\"PeriodicalId\":414088,\"journal\":{\"name\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone2020-16806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone2020-16806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

堆芯熔化及熔液迁移行为是核反应堆重大事故研究领域的热点和难点问题。运动粒子半隐式(MPS)无网格法具有模拟自由面流和多相流的潜力。在本研究中,采用MPS方法模拟了UO2-Zr棒型燃料元件的熔化过程。采用标准MPS方法建立相变热传导模型、简化UO2-Zr共晶反应模型、粘性流动模型和表面张力模型。然后,利用改进的MPS程序,模拟分析了轻水堆高温熔融过程及冷却剂通道内熔融液迁移和凝固特性,揭示了轻水堆的严重事故,特别是早期堆芯损伤。结果表明:与初始温度较高的情况相比,当UO2熔液初始温度较低时,会有更多的UO2熔液在棒团表面凝固,UO2熔液对上部流道的堵塞更为严重;此外,本研究还展示了MPS方法在传统轻水堆以及未来先进核反应堆复杂严重事故现象研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study of Fuel Melting and Molten Migration Based on the MPS Method
Core melting and molten migration behavior are hot and difficult issues in the field of nuclear reactor severe accident research. The Moving Particle Semi-implicit (MPS) meshless method has potential to simulate free-surface and multiphase flows. In this study, the MPS method was utilized to simulate the melting process of UO2-Zr rod-type fuel elements. The models of heat conduction with phase change, simplified UO2-Zr eutectic reaction, viscous flow and surface tension were implemented with the framework of standard MPS method. Then, the improved MPS code was used to simulate and analyze the process of high-temperature melting and characteristics of molten migration and solidification in the coolant channel, aiming at revealing the severe accidents for light water reactors (LWR), particularly the early core damage. The results showed that compared with the case of higher initial temperature, when the initial temperature of molten UO2 is lower, more molten UO2 will solidify on the surface of rod cluster, and the blockage of upper flow channel caused by molten UO2 is more serious. In addition, this study also demonstrated the potential of the MPS method for the study of complicated severe accident phenomena in not only traditional LWR but also advanced nuclear reactors in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信