基于常识知识的人脸检测

A. Kouzani, F. He, K. Sammut
{"title":"基于常识知识的人脸检测","authors":"A. Kouzani, F. He, K. Sammut","doi":"10.1109/INES.1997.632419","DOIUrl":null,"url":null,"abstract":"A connectionist model is presented for commonsense knowledge representation and reasoning. The representation and reasoning ability of the model is described through examples. The commonsense knowledge base is employed to develop a human face detection system. The system consists of three stages: preprocessing, face-components extraction, and final decision-making. A neural network-based algorithm is utilised to extract face components. Five networks are trained to detect mouth, nose, eyes, and full face. The detected face components and their corresponding possibility degrees allow the knowledge base to locate faces in the image and generate a membership degree for the detected faces within the face class. The experimental results obtained using this method are presented.","PeriodicalId":161975,"journal":{"name":"Proceedings of IEEE International Conference on Intelligent Engineering Systems","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Commonsense knowledge-based face detection\",\"authors\":\"A. Kouzani, F. He, K. Sammut\",\"doi\":\"10.1109/INES.1997.632419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A connectionist model is presented for commonsense knowledge representation and reasoning. The representation and reasoning ability of the model is described through examples. The commonsense knowledge base is employed to develop a human face detection system. The system consists of three stages: preprocessing, face-components extraction, and final decision-making. A neural network-based algorithm is utilised to extract face components. Five networks are trained to detect mouth, nose, eyes, and full face. The detected face components and their corresponding possibility degrees allow the knowledge base to locate faces in the image and generate a membership degree for the detected faces within the face class. The experimental results obtained using this method are presented.\",\"PeriodicalId\":161975,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Intelligent Engineering Systems\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.1997.632419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.1997.632419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种用于常识表示和推理的连接主义模型。通过实例说明了该模型的表示和推理能力。利用常识性知识库开发人脸检测系统。该系统包括预处理、人脸成分提取和最终决策三个阶段。采用基于神经网络的人脸成分提取算法。五个网络被训练来检测嘴、鼻子、眼睛和整个脸。检测到的人脸成分及其对应的可能性度允许知识库定位图像中的人脸,并为检测到的人脸在人脸类内生成隶属度。给出了用该方法得到的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commonsense knowledge-based face detection
A connectionist model is presented for commonsense knowledge representation and reasoning. The representation and reasoning ability of the model is described through examples. The commonsense knowledge base is employed to develop a human face detection system. The system consists of three stages: preprocessing, face-components extraction, and final decision-making. A neural network-based algorithm is utilised to extract face components. Five networks are trained to detect mouth, nose, eyes, and full face. The detected face components and their corresponding possibility degrees allow the knowledge base to locate faces in the image and generate a membership degree for the detected faces within the face class. The experimental results obtained using this method are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信