有限生成域的分解

J. Davenport, B. Trager
{"title":"有限生成域的分解","authors":"J. Davenport, B. Trager","doi":"10.1145/800206.806396","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of factoring polynomials over a variety of domains. We first describe the current methods of factoring polynomials over the integers, and extend them to the integers mod p. We then consider the problem of factoring over algebraic domains. Having produced several negative results, showing that, if the domain is not properly specified, then the problem is insoluble, we then show that, for a properly specified finitely generated extension of the rationals or the integers mod p, the problem is soluble. We conclude by discussing the problems of factoring over algebraic closures.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Factorization over finitely generated fields\",\"authors\":\"J. Davenport, B. Trager\",\"doi\":\"10.1145/800206.806396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of factoring polynomials over a variety of domains. We first describe the current methods of factoring polynomials over the integers, and extend them to the integers mod p. We then consider the problem of factoring over algebraic domains. Having produced several negative results, showing that, if the domain is not properly specified, then the problem is insoluble, we then show that, for a properly specified finitely generated extension of the rationals or the integers mod p, the problem is soluble. We conclude by discussing the problems of factoring over algebraic closures.\",\"PeriodicalId\":314618,\"journal\":{\"name\":\"Symposium on Symbolic and Algebraic Manipulation\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Symbolic and Algebraic Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800206.806396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800206.806396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文研究了多种域上多项式的因式分解问题。我们首先描述了多项式在整数上的因式分解的现有方法,并将其推广到mod p的整数上。然后我们考虑了在代数域上因式分解的问题。给出了几个否定的结果,表明如果定义域没有适当指定,那么问题是不可解的,然后我们证明,对于合理指定的有限生成的有理或整数模p的扩展,问题是可解的。最后讨论代数闭包上的因式分解问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorization over finitely generated fields
This paper considers the problem of factoring polynomials over a variety of domains. We first describe the current methods of factoring polynomials over the integers, and extend them to the integers mod p. We then consider the problem of factoring over algebraic domains. Having produced several negative results, showing that, if the domain is not properly specified, then the problem is insoluble, we then show that, for a properly specified finitely generated extension of the rationals or the integers mod p, the problem is soluble. We conclude by discussing the problems of factoring over algebraic closures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信