一种适用于高斯和非高斯噪声环境的实时射频测向算法

W. Featherstone, H. Strangeways
{"title":"一种适用于高斯和非高斯噪声环境的实时射频测向算法","authors":"W. Featherstone, H. Strangeways","doi":"10.1109/RAWCON.1998.709180","DOIUrl":null,"url":null,"abstract":"In this paper, a new superresolution direction finding (SRDF) algorithm for multiple incident radio waves is proposed. Superresolution methods enable resolution of signals separated by less than the natural beamwidth of the array. This ability enables the algorithms to separate the closely spaced signals encountered in a multipath environment. The algorithm is termed loaded capon and is shown to be capable of operating on data sets containing a limited number of data points. The new algorithm is shown to be robust in both Gaussian and non-Gaussian noise environments. Simulated and measured data, recorded on a multi-channel direction finding system, are used to demonstrate the algorithm's superior performance robustness over both the standard MVE and eigen-based techniques such as MUSIC.","PeriodicalId":226788,"journal":{"name":"Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new real time radio frequency direction finding algorithm for Gaussian and non-Gaussian noise environments\",\"authors\":\"W. Featherstone, H. Strangeways\",\"doi\":\"10.1109/RAWCON.1998.709180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new superresolution direction finding (SRDF) algorithm for multiple incident radio waves is proposed. Superresolution methods enable resolution of signals separated by less than the natural beamwidth of the array. This ability enables the algorithms to separate the closely spaced signals encountered in a multipath environment. The algorithm is termed loaded capon and is shown to be capable of operating on data sets containing a limited number of data points. The new algorithm is shown to be robust in both Gaussian and non-Gaussian noise environments. Simulated and measured data, recorded on a multi-channel direction finding system, are used to demonstrate the algorithm's superior performance robustness over both the standard MVE and eigen-based techniques such as MUSIC.\",\"PeriodicalId\":226788,\"journal\":{\"name\":\"Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAWCON.1998.709180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAWCON.1998.709180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种新的多入射无线电波超分辨测向算法。超分辨率方法能够分辨出距离小于阵列自然波束宽度的信号。这种能力使算法能够分离在多路径环境中遇到的紧密间隔的信号。该算法被称为加载capon,并被证明能够对包含有限数量数据点的数据集进行操作。该算法在高斯噪声和非高斯噪声环境下都具有良好的鲁棒性。在多通道测向系统上记录的模拟和测量数据用于证明该算法优于标准MVE和基于特征的技术(如MUSIC)的性能鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new real time radio frequency direction finding algorithm for Gaussian and non-Gaussian noise environments
In this paper, a new superresolution direction finding (SRDF) algorithm for multiple incident radio waves is proposed. Superresolution methods enable resolution of signals separated by less than the natural beamwidth of the array. This ability enables the algorithms to separate the closely spaced signals encountered in a multipath environment. The algorithm is termed loaded capon and is shown to be capable of operating on data sets containing a limited number of data points. The new algorithm is shown to be robust in both Gaussian and non-Gaussian noise environments. Simulated and measured data, recorded on a multi-channel direction finding system, are used to demonstrate the algorithm's superior performance robustness over both the standard MVE and eigen-based techniques such as MUSIC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信