一种基于pca的SIFT大数据库匹配分词方法

Geoffrey Treen, A. Whitehead
{"title":"一种基于pca的SIFT大数据库匹配分词方法","authors":"Geoffrey Treen, A. Whitehead","doi":"10.1109/CRV.2010.9","DOIUrl":null,"url":null,"abstract":"A method for efficiently finding SIFT correspondences in large keypoint archives by separating a database into bins – using the principal components of the SIFT descriptor vector as the binning criteria – is proposed. This technique builds upon our previous efforts to improve SIFT matching speed in image pairs, and will find correspondences approximately three times faster than FLANN – the approximate nearest-neighbor search library that implements the existing state of the art – for the same recall-precision performance.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A PCA-Based Binning Approach for Matching to Large SIFT Database\",\"authors\":\"Geoffrey Treen, A. Whitehead\",\"doi\":\"10.1109/CRV.2010.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for efficiently finding SIFT correspondences in large keypoint archives by separating a database into bins – using the principal components of the SIFT descriptor vector as the binning criteria – is proposed. This technique builds upon our previous efforts to improve SIFT matching speed in image pairs, and will find correspondences approximately three times faster than FLANN – the approximate nearest-neighbor search library that implements the existing state of the art – for the same recall-precision performance.\",\"PeriodicalId\":358821,\"journal\":{\"name\":\"2010 Canadian Conference on Computer and Robot Vision\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Canadian Conference on Computer and Robot Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2010.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种利用SIFT描述符向量的主成分作为分类标准,将数据库分成若干个分类箱的方法,用于在大型关键点档案中高效地查找SIFT对应。该技术建立在我们之前提高图像对中SIFT匹配速度的努力之上,并且在相同的recall-precision性能下,将比FLANN(实现现有技术状态的近似最近邻搜索库)快大约三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PCA-Based Binning Approach for Matching to Large SIFT Database
A method for efficiently finding SIFT correspondences in large keypoint archives by separating a database into bins – using the principal components of the SIFT descriptor vector as the binning criteria – is proposed. This technique builds upon our previous efforts to improve SIFT matching speed in image pairs, and will find correspondences approximately three times faster than FLANN – the approximate nearest-neighbor search library that implements the existing state of the art – for the same recall-precision performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信