{"title":"从RTL到CUDA:批量刺激下RTL仿真的GPU加速流程","authors":"Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, Tsung-Wei Huang","doi":"10.1145/3545008.3545091","DOIUrl":null,"url":null,"abstract":"High-throughput RTL simulation is critical for verifying today’s highly complex SoCs. Recent research has explored accelerating RTL simulation by leveraging event-driven approaches or partitioning heuristics to speed up simulation on a single stimulus. To further accelerate throughput performance, industry-quality functional verification signoff must explore running multiple stimulus (i.e., batch stimulus) simultaneously, either with directed tests or random inputs. In this paper, we propose RTLFlow, a GPU-accelerated RTL simulation flow with batch stimulus. RTLflow first transpiles RTL into CUDA kernels that each simulates a partition of the RTL simultaneously across multiple stimulus. It also leverages CUDA Graph and pipeline scheduling for efficient runtime execution. Measuring experimental results on a large industrial design (NVDLA) with 65536 stimulus, we show that RTLflow running on a single A6000 GPU can achieve a 40 × runtime speed-up when compared to an 80-thread multi-core CPU baseline.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"286 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus\",\"authors\":\"Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, Tsung-Wei Huang\",\"doi\":\"10.1145/3545008.3545091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-throughput RTL simulation is critical for verifying today’s highly complex SoCs. Recent research has explored accelerating RTL simulation by leveraging event-driven approaches or partitioning heuristics to speed up simulation on a single stimulus. To further accelerate throughput performance, industry-quality functional verification signoff must explore running multiple stimulus (i.e., batch stimulus) simultaneously, either with directed tests or random inputs. In this paper, we propose RTLFlow, a GPU-accelerated RTL simulation flow with batch stimulus. RTLflow first transpiles RTL into CUDA kernels that each simulates a partition of the RTL simultaneously across multiple stimulus. It also leverages CUDA Graph and pipeline scheduling for efficient runtime execution. Measuring experimental results on a large industrial design (NVDLA) with 65536 stimulus, we show that RTLflow running on a single A6000 GPU can achieve a 40 × runtime speed-up when compared to an 80-thread multi-core CPU baseline.\",\"PeriodicalId\":360504,\"journal\":{\"name\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"volume\":\"286 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545008.3545091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus
High-throughput RTL simulation is critical for verifying today’s highly complex SoCs. Recent research has explored accelerating RTL simulation by leveraging event-driven approaches or partitioning heuristics to speed up simulation on a single stimulus. To further accelerate throughput performance, industry-quality functional verification signoff must explore running multiple stimulus (i.e., batch stimulus) simultaneously, either with directed tests or random inputs. In this paper, we propose RTLFlow, a GPU-accelerated RTL simulation flow with batch stimulus. RTLflow first transpiles RTL into CUDA kernels that each simulates a partition of the RTL simultaneously across multiple stimulus. It also leverages CUDA Graph and pipeline scheduling for efficient runtime execution. Measuring experimental results on a large industrial design (NVDLA) with 65536 stimulus, we show that RTLflow running on a single A6000 GPU can achieve a 40 × runtime speed-up when compared to an 80-thread multi-core CPU baseline.