基于演化和案例的REG方法:NIL-UCM-EvoTAP, NIL-UCM-ValuesCBR和NIL-UCM-EvoCBR

Raquel Hervás, Pablo Gervás
{"title":"基于演化和案例的REG方法:NIL-UCM-EvoTAP, NIL-UCM-ValuesCBR和NIL-UCM-EvoCBR","authors":"Raquel Hervás, Pablo Gervás","doi":"10.3115/1610195.1610227","DOIUrl":null,"url":null,"abstract":"We propose the use of evolutionary algorithms (EAs) (Holland, 1992) to deal with the attribute selection task of referring expression generation. Evolutionary algorithms operate over a population of individuals (possible solutions for a problem) that evolve according to selection rules and genetic operators. The fitness function is a metric that evaluates each of the possible solutions, ensuring that the average adaptation of the population increases each generation. Repeating this process hundreds or thousands of times leads to very good solutions for the problem.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Evolutionary and Case-Based Approaches to REG: NIL-UCM-EvoTAP, NIL-UCM-ValuesCBR and NIL-UCM-EvoCBR\",\"authors\":\"Raquel Hervás, Pablo Gervás\",\"doi\":\"10.3115/1610195.1610227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the use of evolutionary algorithms (EAs) (Holland, 1992) to deal with the attribute selection task of referring expression generation. Evolutionary algorithms operate over a population of individuals (possible solutions for a problem) that evolve according to selection rules and genetic operators. The fitness function is a metric that evaluates each of the possible solutions, ensuring that the average adaptation of the population increases each generation. Repeating this process hundreds or thousands of times leads to very good solutions for the problem.\",\"PeriodicalId\":307841,\"journal\":{\"name\":\"European Workshop on Natural Language Generation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Workshop on Natural Language Generation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1610195.1610227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1610195.1610227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们建议使用进化算法(EAs) (Holland, 1992)来处理引用表达式生成的属性选择任务。进化算法对根据选择规则和遗传算子进化的个体群体(问题的可能解决方案)进行操作。适应度函数是评估每个可能解决方案的度量,确保种群的平均适应能力每一代都在增加。重复这个过程数百次或数千次,就会产生非常好的问题解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary and Case-Based Approaches to REG: NIL-UCM-EvoTAP, NIL-UCM-ValuesCBR and NIL-UCM-EvoCBR
We propose the use of evolutionary algorithms (EAs) (Holland, 1992) to deal with the attribute selection task of referring expression generation. Evolutionary algorithms operate over a population of individuals (possible solutions for a problem) that evolve according to selection rules and genetic operators. The fitness function is a metric that evaluates each of the possible solutions, ensuring that the average adaptation of the population increases each generation. Repeating this process hundreds or thousands of times leads to very good solutions for the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信