为需求响应程序高效集成智能家电

M. Afzalan, F. Jazizadeh
{"title":"为需求响应程序高效集成智能家电","authors":"M. Afzalan, F. Jazizadeh","doi":"10.1145/3276774.3276787","DOIUrl":null,"url":null,"abstract":"Power utilities rely on Demand Response (DR) programs in order to shave the peak load at critical times, when there is an excessive demand. In the context of automation, DR programs are categorized as manual or automated. With the emergence of home energy management (HEM) systems that monitor and operate the household appliances, the opportunities for automated DR have emerged. For example, smart appliances with deferrable loads can be scheduled to shift their load without consumers' intervention, given that many consumers might not engage enough to perform the manual DR. However, it has been shown that unjustified load compensation from many HEM-enabled consumers in peak times could result in high off-peak demand. Therefore, it is essential for utilities to identify and target the consumers for participation based on certain criteria. To address this issue, in this paper, we proposed a method for the selection of consumers who are using smart appliances with the highest potential for a DR program. The proposed method measures the (1) frequency, (2) consistency, and (3) peak time usage of deferrable loads across several days. We evaluate our approach on a historical real-world electricity consumption dataset from residential households. The findings demonstrate the efficacy of the proposed method to sort consumers (with the smart appliance) based on their potential to participate in DR.","PeriodicalId":294697,"journal":{"name":"Proceedings of the 5th Conference on Systems for Built Environments","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Efficient integration of smart appliances for demand response programs\",\"authors\":\"M. Afzalan, F. Jazizadeh\",\"doi\":\"10.1145/3276774.3276787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power utilities rely on Demand Response (DR) programs in order to shave the peak load at critical times, when there is an excessive demand. In the context of automation, DR programs are categorized as manual or automated. With the emergence of home energy management (HEM) systems that monitor and operate the household appliances, the opportunities for automated DR have emerged. For example, smart appliances with deferrable loads can be scheduled to shift their load without consumers' intervention, given that many consumers might not engage enough to perform the manual DR. However, it has been shown that unjustified load compensation from many HEM-enabled consumers in peak times could result in high off-peak demand. Therefore, it is essential for utilities to identify and target the consumers for participation based on certain criteria. To address this issue, in this paper, we proposed a method for the selection of consumers who are using smart appliances with the highest potential for a DR program. The proposed method measures the (1) frequency, (2) consistency, and (3) peak time usage of deferrable loads across several days. We evaluate our approach on a historical real-world electricity consumption dataset from residential households. The findings demonstrate the efficacy of the proposed method to sort consumers (with the smart appliance) based on their potential to participate in DR.\",\"PeriodicalId\":294697,\"journal\":{\"name\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3276774.3276787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Conference on Systems for Built Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276774.3276787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

电力公司依靠需求响应(DR)计划在需求过剩的关键时刻削减峰值负荷。在自动化环境下,容灾程序分为手动和自动化两种。随着监控和操作家用电器的家庭能源管理(HEM)系统的出现,自动化DR的机会已经出现。例如,考虑到许多消费者可能没有足够的参与来执行手动dr,可以安排具有可延迟负载的智能设备在没有消费者干预的情况下转移其负载。然而,研究表明,许多启用了hem的消费者在高峰时段进行的不合理的负载补偿可能会导致高峰时段的高非高峰需求。因此,公用事业公司必须根据一定的标准确定和定位参与的消费者。为了解决这个问题,在本文中,我们提出了一种方法来选择使用智能家电的消费者,这些消费者具有最高的DR计划潜力。提出的方法测量(1)频率,(2)一致性,(3)几天内可延迟负载的峰值时间使用。我们在历史真实世界的居民家庭用电量数据集上评估了我们的方法。研究结果表明,根据消费者参与DR的潜力对消费者(使用智能家电)进行分类的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient integration of smart appliances for demand response programs
Power utilities rely on Demand Response (DR) programs in order to shave the peak load at critical times, when there is an excessive demand. In the context of automation, DR programs are categorized as manual or automated. With the emergence of home energy management (HEM) systems that monitor and operate the household appliances, the opportunities for automated DR have emerged. For example, smart appliances with deferrable loads can be scheduled to shift their load without consumers' intervention, given that many consumers might not engage enough to perform the manual DR. However, it has been shown that unjustified load compensation from many HEM-enabled consumers in peak times could result in high off-peak demand. Therefore, it is essential for utilities to identify and target the consumers for participation based on certain criteria. To address this issue, in this paper, we proposed a method for the selection of consumers who are using smart appliances with the highest potential for a DR program. The proposed method measures the (1) frequency, (2) consistency, and (3) peak time usage of deferrable loads across several days. We evaluate our approach on a historical real-world electricity consumption dataset from residential households. The findings demonstrate the efficacy of the proposed method to sort consumers (with the smart appliance) based on their potential to participate in DR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信