Yu-Lun Wan, Jen-Chun Chang, Rong-Jaye Chen, Shiuh-Jeng Wang
{"title":"基于特征选择的勒索软件检测与数据分析的机器学习","authors":"Yu-Lun Wan, Jen-Chun Chang, Rong-Jaye Chen, Shiuh-Jeng Wang","doi":"10.1109/CCOMS.2018.8463300","DOIUrl":null,"url":null,"abstract":"Ransomwares are continuously produced in underground markets such that increasingly high-level and sophisticated ransomwares are spreading all over the world, significantly affecting individuals, businesses, governments, and countries. To prevent large-scale attacks, most companies buy intrusion detection systems to alert regarding any abnormal network behavior. However, they cannot be detected using conventional signature-based detection even though ransomwares belong to the same family. In this study, a method is provided to develop a network intrusion detection model that is based on big data technology. The system uses Argus for packet preprocessing, merging, and labeling the known malicious data. A concept of Biflow was proposed to replace the packet data. Further, we observe that the data size is reduced to 1000: 1. Additionally, the characteristics of a complete traffic are obtained. Six feature selection algorithms were combined to achieve a better accuracy in terms of classification. Finally, the decision tree model of the supervised machine learning was used to enhance the performance of intrusion detection system.","PeriodicalId":405664,"journal":{"name":"2018 3rd International Conference on Computer and Communication Systems (ICCCS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Feature-Selection-Based Ransomware Detection with Machine Learning of Data Analysis\",\"authors\":\"Yu-Lun Wan, Jen-Chun Chang, Rong-Jaye Chen, Shiuh-Jeng Wang\",\"doi\":\"10.1109/CCOMS.2018.8463300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ransomwares are continuously produced in underground markets such that increasingly high-level and sophisticated ransomwares are spreading all over the world, significantly affecting individuals, businesses, governments, and countries. To prevent large-scale attacks, most companies buy intrusion detection systems to alert regarding any abnormal network behavior. However, they cannot be detected using conventional signature-based detection even though ransomwares belong to the same family. In this study, a method is provided to develop a network intrusion detection model that is based on big data technology. The system uses Argus for packet preprocessing, merging, and labeling the known malicious data. A concept of Biflow was proposed to replace the packet data. Further, we observe that the data size is reduced to 1000: 1. Additionally, the characteristics of a complete traffic are obtained. Six feature selection algorithms were combined to achieve a better accuracy in terms of classification. Finally, the decision tree model of the supervised machine learning was used to enhance the performance of intrusion detection system.\",\"PeriodicalId\":405664,\"journal\":{\"name\":\"2018 3rd International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCOMS.2018.8463300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCOMS.2018.8463300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature-Selection-Based Ransomware Detection with Machine Learning of Data Analysis
Ransomwares are continuously produced in underground markets such that increasingly high-level and sophisticated ransomwares are spreading all over the world, significantly affecting individuals, businesses, governments, and countries. To prevent large-scale attacks, most companies buy intrusion detection systems to alert regarding any abnormal network behavior. However, they cannot be detected using conventional signature-based detection even though ransomwares belong to the same family. In this study, a method is provided to develop a network intrusion detection model that is based on big data technology. The system uses Argus for packet preprocessing, merging, and labeling the known malicious data. A concept of Biflow was proposed to replace the packet data. Further, we observe that the data size is reduced to 1000: 1. Additionally, the characteristics of a complete traffic are obtained. Six feature selection algorithms were combined to achieve a better accuracy in terms of classification. Finally, the decision tree model of the supervised machine learning was used to enhance the performance of intrusion detection system.