Jiang Sulin, Pan Yun, Li Qing, Lei Lianfa, L. Weitao, Zhang Yang, Wang Zhenhui
{"title":"陆基微波辐射计观测到的亮度温度脉冲与雷电作用积分关系的遥感初步研究","authors":"Jiang Sulin, Pan Yun, Li Qing, Lei Lianfa, L. Weitao, Zhang Yang, Wang Zhenhui","doi":"10.1364/COSI.2019.JW2A.30","DOIUrl":null,"url":null,"abstract":"The integral of lightning current squared over time, named as the “lightning action integral”, is an indicator of Joule heat generated by lightning discharge. The temperature of air molecules is thus increased, which can be observed by a ground-based microwave radiometer for atmospheric temperature remote sensing. Observational experiments were performed in early summer in 2017 with a ground-based, MWP967KV type microwave radiometer, which is commonly used for atmospheric temperature profile remote sensing but has been properly-configured this study in order to observe the artificially triggered lightning events at Guangzhou field experiment site for lightning research and test (GFESL). Data from the radiometer and the instrument for recording lightning current have been analyzed and the results from 7 effective events show that a relationship like ΔTB=exp(aX) may exist between the brightness temperature increment, ΔTB, in unit of K, observed in 30-50GHz band and the lightning action integral, X, in unit of A2s, calculated from high temporal resolution lightning current records. The correlation coefficient is as high as 0.8863 while the coefficient, a, is equal to 6.25381*10−5 (sample size = 7).","PeriodicalId":123636,"journal":{"name":"Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary study on remote sensing the relationship between the brightness temperature pulses observed with a ground-based microwave radiometer and the lightning action integral*\",\"authors\":\"Jiang Sulin, Pan Yun, Li Qing, Lei Lianfa, L. Weitao, Zhang Yang, Wang Zhenhui\",\"doi\":\"10.1364/COSI.2019.JW2A.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integral of lightning current squared over time, named as the “lightning action integral”, is an indicator of Joule heat generated by lightning discharge. The temperature of air molecules is thus increased, which can be observed by a ground-based microwave radiometer for atmospheric temperature remote sensing. Observational experiments were performed in early summer in 2017 with a ground-based, MWP967KV type microwave radiometer, which is commonly used for atmospheric temperature profile remote sensing but has been properly-configured this study in order to observe the artificially triggered lightning events at Guangzhou field experiment site for lightning research and test (GFESL). Data from the radiometer and the instrument for recording lightning current have been analyzed and the results from 7 effective events show that a relationship like ΔTB=exp(aX) may exist between the brightness temperature increment, ΔTB, in unit of K, observed in 30-50GHz band and the lightning action integral, X, in unit of A2s, calculated from high temporal resolution lightning current records. The correlation coefficient is as high as 0.8863 while the coefficient, a, is equal to 6.25381*10−5 (sample size = 7).\",\"PeriodicalId\":123636,\"journal\":{\"name\":\"Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/COSI.2019.JW2A.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/COSI.2019.JW2A.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary study on remote sensing the relationship between the brightness temperature pulses observed with a ground-based microwave radiometer and the lightning action integral*
The integral of lightning current squared over time, named as the “lightning action integral”, is an indicator of Joule heat generated by lightning discharge. The temperature of air molecules is thus increased, which can be observed by a ground-based microwave radiometer for atmospheric temperature remote sensing. Observational experiments were performed in early summer in 2017 with a ground-based, MWP967KV type microwave radiometer, which is commonly used for atmospheric temperature profile remote sensing but has been properly-configured this study in order to observe the artificially triggered lightning events at Guangzhou field experiment site for lightning research and test (GFESL). Data from the radiometer and the instrument for recording lightning current have been analyzed and the results from 7 effective events show that a relationship like ΔTB=exp(aX) may exist between the brightness temperature increment, ΔTB, in unit of K, observed in 30-50GHz band and the lightning action integral, X, in unit of A2s, calculated from high temporal resolution lightning current records. The correlation coefficient is as high as 0.8863 while the coefficient, a, is equal to 6.25381*10−5 (sample size = 7).