最小描述长度与局部几何

M. Styner, I. Oguz, T. Heimann, G. Gerig
{"title":"最小描述长度与局部几何","authors":"M. Styner, I. Oguz, T. Heimann, G. Gerig","doi":"10.1109/ISBI.2008.4541238","DOIUrl":null,"url":null,"abstract":"Establishing optimal correspondence across object populations is essential to statistical shape analysis. Minimizing the description length (MDL) is a popular method for finding correspondence. In this work, we extend the MDL method by incorporating various local curvature metrics. Using local curvature can improve performance by ensuring that corresponding points exhibit similar local geometric characteristics that can't always be captured by mere point locations. We illustrate results on a variety of anatomical structures. The MDL method with a combination of point locations and curvature outperforms all the other methods we analyzed, including traditional MDL and spherical harmonics (SPHARM) correspondence, when the analyzed object population exhibits complex structure. When the objects are of simple nature, however, there's no added benefit to using the local curvature. In our experiments, we did not observe a significant difference in the correspondence quality when different curvature metrics (e.g. principal curvatures, mean curvature, Gaussian curvature) were used.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Minimum description length with local geometry\",\"authors\":\"M. Styner, I. Oguz, T. Heimann, G. Gerig\",\"doi\":\"10.1109/ISBI.2008.4541238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Establishing optimal correspondence across object populations is essential to statistical shape analysis. Minimizing the description length (MDL) is a popular method for finding correspondence. In this work, we extend the MDL method by incorporating various local curvature metrics. Using local curvature can improve performance by ensuring that corresponding points exhibit similar local geometric characteristics that can't always be captured by mere point locations. We illustrate results on a variety of anatomical structures. The MDL method with a combination of point locations and curvature outperforms all the other methods we analyzed, including traditional MDL and spherical harmonics (SPHARM) correspondence, when the analyzed object population exhibits complex structure. When the objects are of simple nature, however, there's no added benefit to using the local curvature. In our experiments, we did not observe a significant difference in the correspondence quality when different curvature metrics (e.g. principal curvatures, mean curvature, Gaussian curvature) were used.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在对象群之间建立最佳对应关系对于统计形状分析至关重要。最小化描述长度(MDL)是查找对应关系的常用方法。在这项工作中,我们通过纳入各种局部曲率度量来扩展MDL方法。使用局部曲率可以提高性能,因为它确保相应的点具有相似的局部几何特征,而这些特征并不总是由单纯的点位置捕获。我们说明了各种解剖结构的结果。当被分析对象群体呈现复杂结构时,结合点位和曲率的MDL方法优于传统MDL和球面谐波(SPHARM)对应的所有其他方法。然而,当物体性质简单时,使用局部曲率没有额外的好处。在我们的实验中,当使用不同的曲率度量(如主曲率、平均曲率、高斯曲率)时,我们没有观察到通信质量的显着差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum description length with local geometry
Establishing optimal correspondence across object populations is essential to statistical shape analysis. Minimizing the description length (MDL) is a popular method for finding correspondence. In this work, we extend the MDL method by incorporating various local curvature metrics. Using local curvature can improve performance by ensuring that corresponding points exhibit similar local geometric characteristics that can't always be captured by mere point locations. We illustrate results on a variety of anatomical structures. The MDL method with a combination of point locations and curvature outperforms all the other methods we analyzed, including traditional MDL and spherical harmonics (SPHARM) correspondence, when the analyzed object population exhibits complex structure. When the objects are of simple nature, however, there's no added benefit to using the local curvature. In our experiments, we did not observe a significant difference in the correspondence quality when different curvature metrics (e.g. principal curvatures, mean curvature, Gaussian curvature) were used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信