具有早期待机激活的可修系统的指数稳定性

Xue Feng, Lihuan Liu, Xin Liang
{"title":"具有早期待机激活的可修系统的指数稳定性","authors":"Xue Feng, Lihuan Liu, Xin Liang","doi":"10.1109/ISCID.2012.27","DOIUrl":null,"url":null,"abstract":"In this paper, the repairable system solution's exponential stability was discussed. By the method of strong continuous semi-group, the paper analyzed the restriction of essential spectral growth bound of the system operator. The essential spectral bound of the system operator is discussed before and after perturbation under certain condition. The results show that the dynamic solution of the system is exponential stability and tends to the steady solution of the system.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Stability of a Repairable System with Early Standby Activation\",\"authors\":\"Xue Feng, Lihuan Liu, Xin Liang\",\"doi\":\"10.1109/ISCID.2012.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the repairable system solution's exponential stability was discussed. By the method of strong continuous semi-group, the paper analyzed the restriction of essential spectral growth bound of the system operator. The essential spectral bound of the system operator is discussed before and after perturbation under certain condition. The results show that the dynamic solution of the system is exponential stability and tends to the steady solution of the system.\",\"PeriodicalId\":246432,\"journal\":{\"name\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2012.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了可修系统解的指数稳定性问题。利用强连续半群的方法,分析了系统算子本质谱增长界的约束条件。在一定条件下,讨论了扰动前后系统算子的本质谱界。结果表明,系统的动态解是指数稳定的,并趋向于系统的稳态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Stability of a Repairable System with Early Standby Activation
In this paper, the repairable system solution's exponential stability was discussed. By the method of strong continuous semi-group, the paper analyzed the restriction of essential spectral growth bound of the system operator. The essential spectral bound of the system operator is discussed before and after perturbation under certain condition. The results show that the dynamic solution of the system is exponential stability and tends to the steady solution of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信