可靠的用户档案分析和发现的社会网络

Hussein Hazimeh, E. Mugellini, Omar Abou Khaled
{"title":"可靠的用户档案分析和发现的社会网络","authors":"Hussein Hazimeh, E. Mugellini, Omar Abou Khaled","doi":"10.1145/3316615.3316642","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce heterogeneous methods to analyze and discover user profiles on Online Social Networks (OSNs).We are the first to investigate such methods to profile users on multiple OSNs (Facebook, Twitter, Google+, etc.). In addition, we perform reliable analytics, i.e., users in the datasets are identical. Deeply speaking, if we have a dataset of n number of user profiles on Facebook, we do not analyze n different profiles on corresponding OSN. However, we first perform a user Profile Matching (PM) task from a seed dataset (Facebook for instance) and then match these profiles inside this dataset to their corresponding profiles on other OSNs, then we start our User Profile Analysis and Discovery task (UPAD). We show that our UPAD methods uncover very interesting facts about OSN users.","PeriodicalId":268392,"journal":{"name":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","volume":"27 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reliable User Profile Analytics and Discovery on Social Networks\",\"authors\":\"Hussein Hazimeh, E. Mugellini, Omar Abou Khaled\",\"doi\":\"10.1145/3316615.3316642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce heterogeneous methods to analyze and discover user profiles on Online Social Networks (OSNs).We are the first to investigate such methods to profile users on multiple OSNs (Facebook, Twitter, Google+, etc.). In addition, we perform reliable analytics, i.e., users in the datasets are identical. Deeply speaking, if we have a dataset of n number of user profiles on Facebook, we do not analyze n different profiles on corresponding OSN. However, we first perform a user Profile Matching (PM) task from a seed dataset (Facebook for instance) and then match these profiles inside this dataset to their corresponding profiles on other OSNs, then we start our User Profile Analysis and Discovery task (UPAD). We show that our UPAD methods uncover very interesting facts about OSN users.\",\"PeriodicalId\":268392,\"journal\":{\"name\":\"Proceedings of the 2019 8th International Conference on Software and Computer Applications\",\"volume\":\"27 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 8th International Conference on Software and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316615.3316642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316615.3316642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们介绍了异构方法来分析和发现在线社交网络(Online Social Networks, OSNs)上的用户配置文件。我们是第一个研究这种方法来分析多个osn (Facebook, Twitter, Google+等)上的用户。此外,我们执行可靠的分析,即数据集中的用户是相同的。更深入地说,如果我们有一个包含n个Facebook用户配置文件的数据集,我们不会在相应的OSN上分析n个不同的配置文件。然而,我们首先从种子数据集(例如Facebook)执行用户配置文件匹配(PM)任务,然后将该数据集中的这些配置文件与其他osn上相应的配置文件进行匹配,然后我们开始用户配置文件分析和发现任务(UPAD)。我们展示了我们的UPAD方法揭示了关于OSN用户的非常有趣的事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable User Profile Analytics and Discovery on Social Networks
In this paper, we introduce heterogeneous methods to analyze and discover user profiles on Online Social Networks (OSNs).We are the first to investigate such methods to profile users on multiple OSNs (Facebook, Twitter, Google+, etc.). In addition, we perform reliable analytics, i.e., users in the datasets are identical. Deeply speaking, if we have a dataset of n number of user profiles on Facebook, we do not analyze n different profiles on corresponding OSN. However, we first perform a user Profile Matching (PM) task from a seed dataset (Facebook for instance) and then match these profiles inside this dataset to their corresponding profiles on other OSNs, then we start our User Profile Analysis and Discovery task (UPAD). We show that our UPAD methods uncover very interesting facts about OSN users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信