基于GMDH型神经网络和MOGA的水处理过程中聚电解质用量建模与优化

M. Akbarizadeh, Allahyar Daghbandan, M. Yaghoobi
{"title":"基于GMDH型神经网络和MOGA的水处理过程中聚电解质用量建模与优化","authors":"M. Akbarizadeh, Allahyar Daghbandan, M. Yaghoobi","doi":"10.4018/ijcce.2013070107","DOIUrl":null,"url":null,"abstract":"Coagulation-flocculation is the most important parts of water treatment process. Traditionally, optimum pre coagulant dosage is determined by used jar tests in laboratory. However; jar tests are time-consuming, expensive, and less adaptive to changes in raw water quality in real time. Soft computing can be used to overcome these limitations. In this paper, multi-objective evolutionary Pareto optimal design of GMDH Type-Neural Network has been used for modeling and predicting of optimum poly electrolyte dosage in Rasht WTP, Guilan, Iran, using Input-output data sets. In this way, multi-objective uniform-diversity genetic algorithms MUGA are then used for Pareto optimization of GMDH networks. In order to achieve this modeling, the experimental data were divided into train and test sections. The predicted values were compared with those of experimental values in order to estimate the performance of the GMDH network. Also, Multi Objective Genetic Algorithms MOGA are then used for optimization of influence parameters in pre coagulant Poly electrolyte dosage.","PeriodicalId":132974,"journal":{"name":"Int. J. Chemoinformatics Chem. Eng.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modeling and Optimization of Poly Electrolyte Dosage in Water Treatment Process by GMDH Type- NN and MOGA\",\"authors\":\"M. Akbarizadeh, Allahyar Daghbandan, M. Yaghoobi\",\"doi\":\"10.4018/ijcce.2013070107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coagulation-flocculation is the most important parts of water treatment process. Traditionally, optimum pre coagulant dosage is determined by used jar tests in laboratory. However; jar tests are time-consuming, expensive, and less adaptive to changes in raw water quality in real time. Soft computing can be used to overcome these limitations. In this paper, multi-objective evolutionary Pareto optimal design of GMDH Type-Neural Network has been used for modeling and predicting of optimum poly electrolyte dosage in Rasht WTP, Guilan, Iran, using Input-output data sets. In this way, multi-objective uniform-diversity genetic algorithms MUGA are then used for Pareto optimization of GMDH networks. In order to achieve this modeling, the experimental data were divided into train and test sections. The predicted values were compared with those of experimental values in order to estimate the performance of the GMDH network. Also, Multi Objective Genetic Algorithms MOGA are then used for optimization of influence parameters in pre coagulant Poly electrolyte dosage.\",\"PeriodicalId\":132974,\"journal\":{\"name\":\"Int. J. Chemoinformatics Chem. Eng.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Chemoinformatics Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcce.2013070107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Chemoinformatics Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcce.2013070107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

混凝-絮凝是水处理过程中最重要的环节。传统上,最佳预混凝剂用量是通过实验室用瓶试验确定的。然而;罐子测试耗时、昂贵,而且对原水质量的实时变化适应性较差。软计算可以用来克服这些限制。本文采用GMDH型神经网络的多目标进化Pareto优化设计,利用输入-输出数据集对伊朗吉兰Rasht WTP的最佳聚电解质用量进行建模和预测。在此基础上,将多目标均匀-多样性遗传算法MUGA用于GMDH网络的Pareto优化。为了实现该建模,将实验数据分为列车段和测试段。为了估计GMDH网络的性能,将预测值与实验值进行了比较。并利用多目标遗传算法对预混凝剂中聚电解质投加量的影响参数进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Optimization of Poly Electrolyte Dosage in Water Treatment Process by GMDH Type- NN and MOGA
Coagulation-flocculation is the most important parts of water treatment process. Traditionally, optimum pre coagulant dosage is determined by used jar tests in laboratory. However; jar tests are time-consuming, expensive, and less adaptive to changes in raw water quality in real time. Soft computing can be used to overcome these limitations. In this paper, multi-objective evolutionary Pareto optimal design of GMDH Type-Neural Network has been used for modeling and predicting of optimum poly electrolyte dosage in Rasht WTP, Guilan, Iran, using Input-output data sets. In this way, multi-objective uniform-diversity genetic algorithms MUGA are then used for Pareto optimization of GMDH networks. In order to achieve this modeling, the experimental data were divided into train and test sections. The predicted values were compared with those of experimental values in order to estimate the performance of the GMDH network. Also, Multi Objective Genetic Algorithms MOGA are then used for optimization of influence parameters in pre coagulant Poly electrolyte dosage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信