Mustafa Ustuner, F. B. Sanli, G. Bilgin, S. Abdikan
{"title":"Sentinel-IA SAR影像的土地利用和覆被分类:以伊斯坦布尔为例","authors":"Mustafa Ustuner, F. B. Sanli, G. Bilgin, S. Abdikan","doi":"10.1109/SIU.2017.7960373","DOIUrl":null,"url":null,"abstract":"In this study, Sentinel-1A SAR imagery for land use/cover classification and its impacts on classification algorithms were addressed. Sentinel-1A imagery has dual polarization (VV and VH) and freely available from ESA. Istanbul was selected as the study region. After the pre-processing steps including the applying the precise orbit file, calibration, multilooking, speckle filtering and terrain correction, the imagery was classified as the following step. Three classification algorithms (SVM, RF and K-NN) were implemented and the impacts of additional bands (VV-VH, VV+VH etc.) were investigated. Results demonstrated that highest classification accuracy of this study was obtained by SVM classification with the original bands (VV and VH) of Sentinel-1A imagery. Moreover, it was concluded that additional bands had different impacts on each classifier within accuracy.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Land use and cover classification of Sentinel-IA SAR imagery: A case study of Istanbul\",\"authors\":\"Mustafa Ustuner, F. B. Sanli, G. Bilgin, S. Abdikan\",\"doi\":\"10.1109/SIU.2017.7960373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Sentinel-1A SAR imagery for land use/cover classification and its impacts on classification algorithms were addressed. Sentinel-1A imagery has dual polarization (VV and VH) and freely available from ESA. Istanbul was selected as the study region. After the pre-processing steps including the applying the precise orbit file, calibration, multilooking, speckle filtering and terrain correction, the imagery was classified as the following step. Three classification algorithms (SVM, RF and K-NN) were implemented and the impacts of additional bands (VV-VH, VV+VH etc.) were investigated. Results demonstrated that highest classification accuracy of this study was obtained by SVM classification with the original bands (VV and VH) of Sentinel-1A imagery. Moreover, it was concluded that additional bands had different impacts on each classifier within accuracy.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Land use and cover classification of Sentinel-IA SAR imagery: A case study of Istanbul
In this study, Sentinel-1A SAR imagery for land use/cover classification and its impacts on classification algorithms were addressed. Sentinel-1A imagery has dual polarization (VV and VH) and freely available from ESA. Istanbul was selected as the study region. After the pre-processing steps including the applying the precise orbit file, calibration, multilooking, speckle filtering and terrain correction, the imagery was classified as the following step. Three classification algorithms (SVM, RF and K-NN) were implemented and the impacts of additional bands (VV-VH, VV+VH etc.) were investigated. Results demonstrated that highest classification accuracy of this study was obtained by SVM classification with the original bands (VV and VH) of Sentinel-1A imagery. Moreover, it was concluded that additional bands had different impacts on each classifier within accuracy.