地震作用下管道系统的失效模式及评估

Satoru Kai, Akihito Otani
{"title":"地震作用下管道系统的失效模式及评估","authors":"Satoru Kai, Akihito Otani","doi":"10.1115/pvp2019-93438","DOIUrl":null,"url":null,"abstract":"Failure modes of piping systems under seismic motions were discussed for several decades if the fatigue failure is dominant or there is some possibility that the plastic collapse could occur. A handful of ratchet-buckling failure observed in Pipe Fittings Dynamic Reliability Program by EPRI was frequently taken up as the evidence of the plastic collapse, and inclusion of seismic response on structures into the Primary stress evaluation for piping systems in the code evaluation was considered to be conventionally justified. Although prevention of the plastic collapse type failure is the purpose of imposing the Primary stress evaluation, the other experimental tests conducted in several countries for decades were unable to represent the plastic collapse of piping components exposed to seismic loading and the discussion was abandoned for a while. However, the drastically increased design seismic motions for nuclear power plants due to several huge earthquake occurred in Japan reminded us of exploring the fact of the plastic collapse and the necessity of the Primary stress evaluation. The load classification concept proposed by the authors introduces 3 conceptual force terms from the equation of motion to clarify the seismic loading from the aspect of the correlation of the said force terms. Based on the finding from the concept that the input force amplitude is to be evaluated for Primary stress, the gross-plastic deformation on a single cantilever with elastic-plastic analyses using multiple of single-cycle sinusoidal forcing functions was compared with the input force term. When the plastic collapse is defined as a gross-plastic deformation, the level of plastic collapse was found to be possibly anticipated with a static force evaluation that can be substitute for the conventional Primary stress evaluation with the dynamic response analysis.","PeriodicalId":180537,"journal":{"name":"Volume 8: Seismic Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure Modes of Piping Systems Under Seismic Loading and Evaluation\",\"authors\":\"Satoru Kai, Akihito Otani\",\"doi\":\"10.1115/pvp2019-93438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure modes of piping systems under seismic motions were discussed for several decades if the fatigue failure is dominant or there is some possibility that the plastic collapse could occur. A handful of ratchet-buckling failure observed in Pipe Fittings Dynamic Reliability Program by EPRI was frequently taken up as the evidence of the plastic collapse, and inclusion of seismic response on structures into the Primary stress evaluation for piping systems in the code evaluation was considered to be conventionally justified. Although prevention of the plastic collapse type failure is the purpose of imposing the Primary stress evaluation, the other experimental tests conducted in several countries for decades were unable to represent the plastic collapse of piping components exposed to seismic loading and the discussion was abandoned for a while. However, the drastically increased design seismic motions for nuclear power plants due to several huge earthquake occurred in Japan reminded us of exploring the fact of the plastic collapse and the necessity of the Primary stress evaluation. The load classification concept proposed by the authors introduces 3 conceptual force terms from the equation of motion to clarify the seismic loading from the aspect of the correlation of the said force terms. Based on the finding from the concept that the input force amplitude is to be evaluated for Primary stress, the gross-plastic deformation on a single cantilever with elastic-plastic analyses using multiple of single-cycle sinusoidal forcing functions was compared with the input force term. When the plastic collapse is defined as a gross-plastic deformation, the level of plastic collapse was found to be possibly anticipated with a static force evaluation that can be substitute for the conventional Primary stress evaluation with the dynamic response analysis.\",\"PeriodicalId\":180537,\"journal\":{\"name\":\"Volume 8: Seismic Engineering\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Seismic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Seismic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,人们一直在讨论地震作用下管道系统以疲劳破坏为主或存在塑性破坏可能性时的破坏模式。EPRI在管件动态可靠性程序中观察到的少量棘轮屈曲破坏经常被作为塑性破坏的证据,并且在规范评估中将结构的地震反应纳入管道系统的主应力评估中被认为是合理的。虽然进行主应力评价的目的是防止塑性破坏型破坏,但几十年来一些国家进行的其他试验试验无法反映管道构件在地震荷载作用下的塑性破坏,因此暂时搁置了讨论。然而,日本发生的几次大地震使核电站的设计地震运动急剧增加,这提醒了我们对塑性破坏事实的探索和主应力评估的必要性。作者提出的荷载分类概念从运动方程中引入3个概念力项,从力项之间的相互关系来阐明地震荷载。基于输入力幅值为主应力的概念,采用单周期正弦力函数的多重弹塑性分析方法,对单悬臂梁的总塑性变形与输入力项进行了比较。当塑性破坏被定义为总塑性变形时,发现可以用静力评估来预测塑性破坏的程度,可以代替传统的用动态响应分析进行主应力评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Failure Modes of Piping Systems Under Seismic Loading and Evaluation
Failure modes of piping systems under seismic motions were discussed for several decades if the fatigue failure is dominant or there is some possibility that the plastic collapse could occur. A handful of ratchet-buckling failure observed in Pipe Fittings Dynamic Reliability Program by EPRI was frequently taken up as the evidence of the plastic collapse, and inclusion of seismic response on structures into the Primary stress evaluation for piping systems in the code evaluation was considered to be conventionally justified. Although prevention of the plastic collapse type failure is the purpose of imposing the Primary stress evaluation, the other experimental tests conducted in several countries for decades were unable to represent the plastic collapse of piping components exposed to seismic loading and the discussion was abandoned for a while. However, the drastically increased design seismic motions for nuclear power plants due to several huge earthquake occurred in Japan reminded us of exploring the fact of the plastic collapse and the necessity of the Primary stress evaluation. The load classification concept proposed by the authors introduces 3 conceptual force terms from the equation of motion to clarify the seismic loading from the aspect of the correlation of the said force terms. Based on the finding from the concept that the input force amplitude is to be evaluated for Primary stress, the gross-plastic deformation on a single cantilever with elastic-plastic analyses using multiple of single-cycle sinusoidal forcing functions was compared with the input force term. When the plastic collapse is defined as a gross-plastic deformation, the level of plastic collapse was found to be possibly anticipated with a static force evaluation that can be substitute for the conventional Primary stress evaluation with the dynamic response analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信