利用贝叶斯网络和项目反应理论更新学生模型

Yaser Nouh, P. Karthikeyani, Dr. R. Nadarajan
{"title":"利用贝叶斯网络和项目反应理论更新学生模型","authors":"Yaser Nouh, P. Karthikeyani, Dr. R. Nadarajan","doi":"10.1109/ICISIP.2006.4286086","DOIUrl":null,"url":null,"abstract":"Nowadays different approaches are coming forth to tutor students using computers. In this paper, a computer based intelligent tutoring system (ITS) is presented. It projects out a new approach dealing with diagnosis in student modeling which emphasizes on Bayesian Networks (for decision making) and Item Response Theory (for adaptive question selection). The advantage of such an approach through Bayesian Networks (Formal framework of Uncertainty) is that this structural model allows substantial simplification when specifying parameters (Conditional Probabilities) which measures student ability at different levels of granularity. In addition, the probabilistic student model is proved to be quicker, more accurate and more efficient. Since most of the tutoring systems are static HTML web pages of class textbooks, our intelligent system can help a student navigate through online course materials and recommended learning goals.","PeriodicalId":187104,"journal":{"name":"2006 Fourth International Conference on Intelligent Sensing and Information Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Updating Student Model using Bayesian Network and Item Response Theory\",\"authors\":\"Yaser Nouh, P. Karthikeyani, Dr. R. Nadarajan\",\"doi\":\"10.1109/ICISIP.2006.4286086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays different approaches are coming forth to tutor students using computers. In this paper, a computer based intelligent tutoring system (ITS) is presented. It projects out a new approach dealing with diagnosis in student modeling which emphasizes on Bayesian Networks (for decision making) and Item Response Theory (for adaptive question selection). The advantage of such an approach through Bayesian Networks (Formal framework of Uncertainty) is that this structural model allows substantial simplification when specifying parameters (Conditional Probabilities) which measures student ability at different levels of granularity. In addition, the probabilistic student model is proved to be quicker, more accurate and more efficient. Since most of the tutoring systems are static HTML web pages of class textbooks, our intelligent system can help a student navigate through online course materials and recommended learning goals.\",\"PeriodicalId\":187104,\"journal\":{\"name\":\"2006 Fourth International Conference on Intelligent Sensing and Information Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Fourth International Conference on Intelligent Sensing and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIP.2006.4286086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Fourth International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2006.4286086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如今,使用电脑辅导学生的方法层出不穷。本文提出了一种基于计算机的智能辅导系统(ITS)。提出了一种处理学生建模诊断的新方法,该方法强调贝叶斯网络(用于决策)和项目反应理论(用于自适应问题选择)。这种方法通过贝叶斯网络(不确定性的正式框架)的优势在于,这种结构模型允许在指定参数(条件概率)时进行实质性的简化,这些参数在不同粒度级别上衡量学生的能力。此外,概率学生模型具有更快、更准确、更高效的特点。由于大多数辅导系统都是静态的HTML网页,我们的智能系统可以帮助学生浏览在线课程材料和推荐的学习目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Updating Student Model using Bayesian Network and Item Response Theory
Nowadays different approaches are coming forth to tutor students using computers. In this paper, a computer based intelligent tutoring system (ITS) is presented. It projects out a new approach dealing with diagnosis in student modeling which emphasizes on Bayesian Networks (for decision making) and Item Response Theory (for adaptive question selection). The advantage of such an approach through Bayesian Networks (Formal framework of Uncertainty) is that this structural model allows substantial simplification when specifying parameters (Conditional Probabilities) which measures student ability at different levels of granularity. In addition, the probabilistic student model is proved to be quicker, more accurate and more efficient. Since most of the tutoring systems are static HTML web pages of class textbooks, our intelligent system can help a student navigate through online course materials and recommended learning goals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信