对抗性放置向量学习

Ayesha Rafique, Tauseef Iftikhar, Nazar Khan
{"title":"对抗性放置向量学习","authors":"Ayesha Rafique, Tauseef Iftikhar, Nazar Khan","doi":"10.23919/ICACS.2019.8689004","DOIUrl":null,"url":null,"abstract":"Automated jigsaw puzzle solving is a challenging problem with numerous scientific applications. We explore whether a Generative Adversarial Network (GAN) can output jigsaw piece placements. State-of-the-art GANs for image-to-image translation cannot solve the jigsaw problem in an exact fashion. Instead of learning image-to-image mappings, we propose a novel piece-to-location mapping problem and present a trainable generative model for producing output that can be interpreted as the placement of jigsaw pieces. This represents a first step in developing a complete learning-based generative model for piece-to-location mappings. We introduce four new evaluation measures for the quality of output locations and show that locations generated by our model perform favorably.","PeriodicalId":290819,"journal":{"name":"2019 2nd International Conference on Advancements in Computational Sciences (ICACS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adversarial Placement Vector Learning\",\"authors\":\"Ayesha Rafique, Tauseef Iftikhar, Nazar Khan\",\"doi\":\"10.23919/ICACS.2019.8689004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated jigsaw puzzle solving is a challenging problem with numerous scientific applications. We explore whether a Generative Adversarial Network (GAN) can output jigsaw piece placements. State-of-the-art GANs for image-to-image translation cannot solve the jigsaw problem in an exact fashion. Instead of learning image-to-image mappings, we propose a novel piece-to-location mapping problem and present a trainable generative model for producing output that can be interpreted as the placement of jigsaw pieces. This represents a first step in developing a complete learning-based generative model for piece-to-location mappings. We introduce four new evaluation measures for the quality of output locations and show that locations generated by our model perform favorably.\",\"PeriodicalId\":290819,\"journal\":{\"name\":\"2019 2nd International Conference on Advancements in Computational Sciences (ICACS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Advancements in Computational Sciences (ICACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACS.2019.8689004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACS.2019.8689004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动拼图是一个具有许多科学应用的具有挑战性的问题。我们探索生成对抗网络(GAN)是否可以输出拼图块的位置。用于图像到图像转换的最先进的gan不能以精确的方式解决拼图问题。代替学习图像到图像的映射,我们提出了一个新的块到位置映射问题,并提出了一个可训练的生成模型,用于产生输出,可以解释为拼图块的位置。这代表了为零件到位置的映射开发一个完整的基于学习的生成模型的第一步。我们引入了四种新的评价方法来衡量产出地点的质量,并表明由我们的模型生成的地点表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial Placement Vector Learning
Automated jigsaw puzzle solving is a challenging problem with numerous scientific applications. We explore whether a Generative Adversarial Network (GAN) can output jigsaw piece placements. State-of-the-art GANs for image-to-image translation cannot solve the jigsaw problem in an exact fashion. Instead of learning image-to-image mappings, we propose a novel piece-to-location mapping problem and present a trainable generative model for producing output that can be interpreted as the placement of jigsaw pieces. This represents a first step in developing a complete learning-based generative model for piece-to-location mappings. We introduce four new evaluation measures for the quality of output locations and show that locations generated by our model perform favorably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信