模型不确定性

{"title":"模型不确定性","authors":"","doi":"10.1002/9781119113072.ch11","DOIUrl":null,"url":null,"abstract":". The evolution of Bayesian approaches for model uncertainty over the past decade has been remarkable. Catalyzed by advances in methods and technology for posterior computation, the scope of these methods has widened substantially. Major thrusts of these developments have included new methods for semiautomatic prior specification and posterior exploration. To illustrate key aspects of this evolution, the highlights of some of these developments are described.","PeriodicalId":224167,"journal":{"name":"Statistics for Making Decisions","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model uncertainty\",\"authors\":\"\",\"doi\":\"10.1002/9781119113072.ch11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The evolution of Bayesian approaches for model uncertainty over the past decade has been remarkable. Catalyzed by advances in methods and technology for posterior computation, the scope of these methods has widened substantially. Major thrusts of these developments have included new methods for semiautomatic prior specification and posterior exploration. To illustrate key aspects of this evolution, the highlights of some of these developments are described.\",\"PeriodicalId\":224167,\"journal\":{\"name\":\"Statistics for Making Decisions\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics for Making Decisions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119113072.ch11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics for Making Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119113072.ch11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 在过去的十年中,贝叶斯方法在模型不确定性方面的发展是显著的。由于后验计算方法和技术的进步,这些方法的范围大大扩大了。这些发展的主要推动力包括半自动预先规范和后验探索的新方法。为了说明这一演变的关键方面,本文描述了其中一些发展的亮点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model uncertainty
. The evolution of Bayesian approaches for model uncertainty over the past decade has been remarkable. Catalyzed by advances in methods and technology for posterior computation, the scope of these methods has widened substantially. Major thrusts of these developments have included new methods for semiautomatic prior specification and posterior exploration. To illustrate key aspects of this evolution, the highlights of some of these developments are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信