一个增强银行业信用风险管理的模型

Okuthe P. Kogeda, Nicknolt N. Vumane
{"title":"一个增强银行业信用风险管理的模型","authors":"Okuthe P. Kogeda, Nicknolt N. Vumane","doi":"10.4018/IJTD.2017100104","DOIUrl":null,"url":null,"abstract":"A lack of reliable credit risk measurements and poor control of credit risks has caused massive financial losses across a wide spectrum of business. Financial institutions like banks have not been able to control and contain the rapid increases of the credit defaulting. In this paper, we address the credit lending challenges by eliminating credit defaulting faced by the banking industry. Data from bank of previously accepted and rejected loan applicants was used to construct a credit risk evaluation network. The artificial neural network technique with back-propagation algorithm was applied to develop a model that supports the banks in the credit granting decision-making. The model was trained to categorize applicants as either good (credit granted) or bad (credit denied) based on the credit record. The model was able to predict whether a particular applicant is likely or unlikely to repay the credit. The training of neural network model and validation testing was done using data obtained from the bank. The results show a greater performance, classification and prediction accuracy.","PeriodicalId":208567,"journal":{"name":"Int. J. Technol. Diffusion","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Model Augmenting Credit Risk Management in the Banking Industry\",\"authors\":\"Okuthe P. Kogeda, Nicknolt N. Vumane\",\"doi\":\"10.4018/IJTD.2017100104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lack of reliable credit risk measurements and poor control of credit risks has caused massive financial losses across a wide spectrum of business. Financial institutions like banks have not been able to control and contain the rapid increases of the credit defaulting. In this paper, we address the credit lending challenges by eliminating credit defaulting faced by the banking industry. Data from bank of previously accepted and rejected loan applicants was used to construct a credit risk evaluation network. The artificial neural network technique with back-propagation algorithm was applied to develop a model that supports the banks in the credit granting decision-making. The model was trained to categorize applicants as either good (credit granted) or bad (credit denied) based on the credit record. The model was able to predict whether a particular applicant is likely or unlikely to repay the credit. The training of neural network model and validation testing was done using data obtained from the bank. The results show a greater performance, classification and prediction accuracy.\",\"PeriodicalId\":208567,\"journal\":{\"name\":\"Int. J. Technol. Diffusion\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Technol. Diffusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJTD.2017100104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Technol. Diffusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJTD.2017100104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于缺乏可靠的信用风险测量和信用风险控制不力,已在广泛的业务领域造成了巨大的财务损失。像银行这样的金融机构已经无法控制和遏制信用违约的快速增长。在本文中,我们通过消除银行业面临的信用违约来解决信贷挑战。利用银行以往接受和拒绝贷款申请人的数据构建信用风险评估网络。将人工神经网络技术与反向传播算法相结合,建立了支持银行授信决策的模型。该模型经过训练,可以根据信用记录将申请人分为良好(授予信用)或不良(拒绝信用)。该模型能够预测特定申请人是否有可能偿还贷款。利用从数据库中获取的数据对神经网络模型进行了训练和验证测试。结果表明,该方法具有较高的性能、分类精度和预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model Augmenting Credit Risk Management in the Banking Industry
A lack of reliable credit risk measurements and poor control of credit risks has caused massive financial losses across a wide spectrum of business. Financial institutions like banks have not been able to control and contain the rapid increases of the credit defaulting. In this paper, we address the credit lending challenges by eliminating credit defaulting faced by the banking industry. Data from bank of previously accepted and rejected loan applicants was used to construct a credit risk evaluation network. The artificial neural network technique with back-propagation algorithm was applied to develop a model that supports the banks in the credit granting decision-making. The model was trained to categorize applicants as either good (credit granted) or bad (credit denied) based on the credit record. The model was able to predict whether a particular applicant is likely or unlikely to repay the credit. The training of neural network model and validation testing was done using data obtained from the bank. The results show a greater performance, classification and prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信