{"title":"基于正则图的个人档案多目标粒子群模型研究","authors":"T. Uchitane, T. Hatanaka","doi":"10.1109/CEC.2015.7257221","DOIUrl":null,"url":null,"abstract":"Multi-objective evolutionary optimization algorithms have been received much attention in recent years, since a set of Pareto optimal candidate is provided by a single run. Generally, it is required that the provided candidates of Pareto solutions cover the Pareto front widely and uniformly. To achieve this requirement, there has been proposed a lot of variants of multi-objective evolutionary algorithms including multi-objective particle swarm models. We are able to see two major differences in the previously proposed multi-objective particle swarm models, the one is a use of single external archive and depending on additional random effect to maintain particle diversity in the swarm. In this paper, we propose more natural way to apply multi-objective optimization of particle swarm, where we introduce a personal archive that stores non-dominated candidates in each particle history. By numerical examples, the proposed method is able to provide better Pareto candidates without an additional random effect on the swarm model.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A study on multi-objective particle swarm model by personal archives with regular graph\",\"authors\":\"T. Uchitane, T. Hatanaka\",\"doi\":\"10.1109/CEC.2015.7257221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective evolutionary optimization algorithms have been received much attention in recent years, since a set of Pareto optimal candidate is provided by a single run. Generally, it is required that the provided candidates of Pareto solutions cover the Pareto front widely and uniformly. To achieve this requirement, there has been proposed a lot of variants of multi-objective evolutionary algorithms including multi-objective particle swarm models. We are able to see two major differences in the previously proposed multi-objective particle swarm models, the one is a use of single external archive and depending on additional random effect to maintain particle diversity in the swarm. In this paper, we propose more natural way to apply multi-objective optimization of particle swarm, where we introduce a personal archive that stores non-dominated candidates in each particle history. By numerical examples, the proposed method is able to provide better Pareto candidates without an additional random effect on the swarm model.\",\"PeriodicalId\":403666,\"journal\":{\"name\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2015.7257221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study on multi-objective particle swarm model by personal archives with regular graph
Multi-objective evolutionary optimization algorithms have been received much attention in recent years, since a set of Pareto optimal candidate is provided by a single run. Generally, it is required that the provided candidates of Pareto solutions cover the Pareto front widely and uniformly. To achieve this requirement, there has been proposed a lot of variants of multi-objective evolutionary algorithms including multi-objective particle swarm models. We are able to see two major differences in the previously proposed multi-objective particle swarm models, the one is a use of single external archive and depending on additional random effect to maintain particle diversity in the swarm. In this paper, we propose more natural way to apply multi-objective optimization of particle swarm, where we introduce a personal archive that stores non-dominated candidates in each particle history. By numerical examples, the proposed method is able to provide better Pareto candidates without an additional random effect on the swarm model.