减少困惑

Kenric P. Nelson
{"title":"减少困惑","authors":"Kenric P. Nelson","doi":"10.1093/oso/9780190636685.003.0012","DOIUrl":null,"url":null,"abstract":"This chapter introduces a simple, intuitive approach to the assessment of probabilistic inferences. The Shannon information metrics are translated to the probability domain. The translation shows that the negative logarithmic score and the geometric mean are equivalent measures of the accuracy of a probabilistic inference. The geometric mean of forecasted probabilities is thus a measure of forecast accuracy and represents the central tendency of the forecasts. The reciprocal of the geometric mean is referred to as the perplexity and defines the number of independent choices needed to resolve the uncertainty. The assessment method introduced in this chapter is intended to reduce the ‘qualitative’ perplexity relative to the potpourri of scoring rules currently used to evaluate machine learning and other probabilistic algorithms. Utilization of this assessment will provide insight into designing algorithms with reduced the ‘quantitative’ perplexity and thus improved the accuracy of probabilistic forecasts. The translation of information metrics to the probability domain is incorporating the generalized entropy functions developed Rényi and Tsallis. Both generalizations translate to the weighted generalized mean. The generalized mean of probabilistic forecasts forms a spectrum of performance metrics referred to as a Risk Profile. The arithmetic mean is used to measure the decisiveness, while the –2/3 mean is used to measure the robustness.","PeriodicalId":161177,"journal":{"name":"Advances in Info-Metrics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reduced Perplexity\",\"authors\":\"Kenric P. Nelson\",\"doi\":\"10.1093/oso/9780190636685.003.0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces a simple, intuitive approach to the assessment of probabilistic inferences. The Shannon information metrics are translated to the probability domain. The translation shows that the negative logarithmic score and the geometric mean are equivalent measures of the accuracy of a probabilistic inference. The geometric mean of forecasted probabilities is thus a measure of forecast accuracy and represents the central tendency of the forecasts. The reciprocal of the geometric mean is referred to as the perplexity and defines the number of independent choices needed to resolve the uncertainty. The assessment method introduced in this chapter is intended to reduce the ‘qualitative’ perplexity relative to the potpourri of scoring rules currently used to evaluate machine learning and other probabilistic algorithms. Utilization of this assessment will provide insight into designing algorithms with reduced the ‘quantitative’ perplexity and thus improved the accuracy of probabilistic forecasts. The translation of information metrics to the probability domain is incorporating the generalized entropy functions developed Rényi and Tsallis. Both generalizations translate to the weighted generalized mean. The generalized mean of probabilistic forecasts forms a spectrum of performance metrics referred to as a Risk Profile. The arithmetic mean is used to measure the decisiveness, while the –2/3 mean is used to measure the robustness.\",\"PeriodicalId\":161177,\"journal\":{\"name\":\"Advances in Info-Metrics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Info-Metrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780190636685.003.0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Info-Metrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780190636685.003.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本章介绍了一种简单、直观的方法来评估概率推断。将香农信息度量转换为概率域。翻译表明,负对数分数和几何平均值是概率推理精度的等效度量。因此,预测概率的几何平均值是预测精度的度量,代表了预测的集中趋势。几何平均值的倒数被称为困惑度,它定义了解决不确定性所需的独立选择的数量。本章介绍的评估方法旨在减少相对于目前用于评估机器学习和其他概率算法的评分规则的“定性”困惑。利用这一评估将为设计算法提供洞察力,减少“定量”困惑,从而提高概率预测的准确性。将信息度量转换到概率域是结合了rsamnyi和Tsallis开发的广义熵函数。两种概化都转化为加权广义均值。概率预测的广义平均值形成了称为风险概况的一系列绩效指标。算术平均值用于衡量决策,而-2/3平均值用于衡量稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Perplexity
This chapter introduces a simple, intuitive approach to the assessment of probabilistic inferences. The Shannon information metrics are translated to the probability domain. The translation shows that the negative logarithmic score and the geometric mean are equivalent measures of the accuracy of a probabilistic inference. The geometric mean of forecasted probabilities is thus a measure of forecast accuracy and represents the central tendency of the forecasts. The reciprocal of the geometric mean is referred to as the perplexity and defines the number of independent choices needed to resolve the uncertainty. The assessment method introduced in this chapter is intended to reduce the ‘qualitative’ perplexity relative to the potpourri of scoring rules currently used to evaluate machine learning and other probabilistic algorithms. Utilization of this assessment will provide insight into designing algorithms with reduced the ‘quantitative’ perplexity and thus improved the accuracy of probabilistic forecasts. The translation of information metrics to the probability domain is incorporating the generalized entropy functions developed Rényi and Tsallis. Both generalizations translate to the weighted generalized mean. The generalized mean of probabilistic forecasts forms a spectrum of performance metrics referred to as a Risk Profile. The arithmetic mean is used to measure the decisiveness, while the –2/3 mean is used to measure the robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信