CONGEST模型中的确定性分布支配集近似

Janosch Deurer, F. Kuhn, Yannic Maus
{"title":"CONGEST模型中的确定性分布支配集近似","authors":"Janosch Deurer, F. Kuhn, Yannic Maus","doi":"10.1145/3293611.3331626","DOIUrl":null,"url":null,"abstract":"We develop deterministic approximation algorithms for the minimum dominating set problem in the CONGEST model with an almost optimal approximation guarantee. For ε 1/ poly log Δ we obtain two algorithms with approximation factor (1 + ε)(1 + ł n (Δ + 1)) and with runtimes 2O(√ log n log log n) and O(Δ poly log Δ + poly log Δ log* n), respectively. Further we show how dominating set approximations can be deterministically transformed into a connected dominating set in the CONGEST model while only increasing the approximation guarantee by a constant factor. This results in a deterministic O(log Δ)-approximation algorithm for the minimum connected dominating set with time complexity 2O(√ log n log log n).","PeriodicalId":153766,"journal":{"name":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Deterministic Distributed Dominating Set Approximation in the CONGEST Model\",\"authors\":\"Janosch Deurer, F. Kuhn, Yannic Maus\",\"doi\":\"10.1145/3293611.3331626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop deterministic approximation algorithms for the minimum dominating set problem in the CONGEST model with an almost optimal approximation guarantee. For ε 1/ poly log Δ we obtain two algorithms with approximation factor (1 + ε)(1 + ł n (Δ + 1)) and with runtimes 2O(√ log n log log n) and O(Δ poly log Δ + poly log Δ log* n), respectively. Further we show how dominating set approximations can be deterministically transformed into a connected dominating set in the CONGEST model while only increasing the approximation guarantee by a constant factor. This results in a deterministic O(log Δ)-approximation algorithm for the minimum connected dominating set with time complexity 2O(√ log n log log n).\",\"PeriodicalId\":153766,\"journal\":{\"name\":\"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3293611.3331626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293611.3331626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

针对CONGEST模型中的最小支配集问题,提出了一种确定性逼近算法,并给出了近似最优的逼近保证。对于ε 1/ poly log Δ,我们得到了两种近似因子(1 + ε)(1 + zn (Δ + 1))和运行时间分别为2O(√log n log log n)和O(Δ poly log Δ + poly log Δ log* n)的算法。进一步,我们展示了如何在CONGEST模型中确定性地将支配集近似转换为连通支配集,同时只增加一个常数因子的近似保证。这导致了最小连接支配集的确定性O(log Δ)近似算法,其时间复杂度为2O(√log n log log n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic Distributed Dominating Set Approximation in the CONGEST Model
We develop deterministic approximation algorithms for the minimum dominating set problem in the CONGEST model with an almost optimal approximation guarantee. For ε 1/ poly log Δ we obtain two algorithms with approximation factor (1 + ε)(1 + ł n (Δ + 1)) and with runtimes 2O(√ log n log log n) and O(Δ poly log Δ + poly log Δ log* n), respectively. Further we show how dominating set approximations can be deterministically transformed into a connected dominating set in the CONGEST model while only increasing the approximation guarantee by a constant factor. This results in a deterministic O(log Δ)-approximation algorithm for the minimum connected dominating set with time complexity 2O(√ log n log log n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信