结合ARIMA-ANN算法预测金融时间序列

Vasyl Hryhorkiv, L. Buiak, Andrii Verstiak, Mariia Hryhorkiv, Oksana Verstiak, K. Tokarieva
{"title":"结合ARIMA-ANN算法预测金融时间序列","authors":"Vasyl Hryhorkiv, L. Buiak, Andrii Verstiak, Mariia Hryhorkiv, Oksana Verstiak, K. Tokarieva","doi":"10.1109/ACIT49673.2020.9208859","DOIUrl":null,"url":null,"abstract":"The research provides forecasting S&P500 index. Since time series of the stock indices contain both linear and non-linear components, therefore, separately linear ARIMA model and nonlinear ANN models cannot give an accurate estimate of such time series. In this regard we proposed an advanced hybrid forecasting model based on the combination of ARIMA and ANN, based on ARIMA's statistical properties. MSE calculations indicated better accuracy of the S&P 500 stock index forecasts obtained using the proposed algorithm.","PeriodicalId":372744,"journal":{"name":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Forecasting Financial Time Sesries Using Combined ARIMA-ANN Algorithm\",\"authors\":\"Vasyl Hryhorkiv, L. Buiak, Andrii Verstiak, Mariia Hryhorkiv, Oksana Verstiak, K. Tokarieva\",\"doi\":\"10.1109/ACIT49673.2020.9208859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research provides forecasting S&P500 index. Since time series of the stock indices contain both linear and non-linear components, therefore, separately linear ARIMA model and nonlinear ANN models cannot give an accurate estimate of such time series. In this regard we proposed an advanced hybrid forecasting model based on the combination of ARIMA and ANN, based on ARIMA's statistical properties. MSE calculations indicated better accuracy of the S&P 500 stock index forecasts obtained using the proposed algorithm.\",\"PeriodicalId\":372744,\"journal\":{\"name\":\"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT49673.2020.9208859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT49673.2020.9208859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

该研究提供了预测标准普尔500指数。由于股票指数的时间序列同时包含线性和非线性成分,因此单独使用线性ARIMA模型和非线性ANN模型无法对该时间序列进行准确估计。基于ARIMA的统计特性,提出了一种基于ARIMA和ANN结合的高级混合预测模型。MSE计算表明,使用该算法获得的标准普尔500指数预测精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Financial Time Sesries Using Combined ARIMA-ANN Algorithm
The research provides forecasting S&P500 index. Since time series of the stock indices contain both linear and non-linear components, therefore, separately linear ARIMA model and nonlinear ANN models cannot give an accurate estimate of such time series. In this regard we proposed an advanced hybrid forecasting model based on the combination of ARIMA and ANN, based on ARIMA's statistical properties. MSE calculations indicated better accuracy of the S&P 500 stock index forecasts obtained using the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信