约束实参数优化中基于多种群的差分演化变量集成并行化

Leyla Belaiche, L. Kahloul, Manel Houimli, Selma Sahraoui, Saber Benharzallah, M. Grid, Nedjma Abidallah
{"title":"约束实参数优化中基于多种群的差分演化变量集成并行化","authors":"Leyla Belaiche, L. Kahloul, Manel Houimli, Selma Sahraoui, Saber Benharzallah, M. Grid, Nedjma Abidallah","doi":"10.1109/EDiS57230.2022.9996477","DOIUrl":null,"url":null,"abstract":"Differential evolution (DE) algorithms face performance challenges, which lean on improving solutions quality, speed-up, and exploitation of computational resources. Parallelism represents a suitable paradigm for overcoming the DE challenges. The ensemble of differential evolution variants (EDEV) algorithm is a recent DE algorithm. EDEV constitutes three DE variants (JADE, CoDE, and EPSDE), which may decrease its speedup. In this paper, a multi-population parallel ensemble of differential evolution variants (MPPEDEV) is proposed based on the synchronous master/slave parallel model. The performance of the proposed MPPEDEV is tested using a constrained real parameter problem proposed in CEC 2006. Compared to four state-of-the-art DE algorithms, which are JADE, CoDE, EPSDE, and EDEV, the results show that MPPEDEV outperforms EDEV in terms of execution time and solutions quality, depending on the population size as a control parameter. Furthermore, MPPEDEV and EDEV outperform JADE, CoDE, and EPSDE in terms of solutions' quality.","PeriodicalId":288133,"journal":{"name":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Population-based Parallelization of Ensemble of Differential Evolution Variants for Constrained Real Parameter Optimization\",\"authors\":\"Leyla Belaiche, L. Kahloul, Manel Houimli, Selma Sahraoui, Saber Benharzallah, M. Grid, Nedjma Abidallah\",\"doi\":\"10.1109/EDiS57230.2022.9996477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential evolution (DE) algorithms face performance challenges, which lean on improving solutions quality, speed-up, and exploitation of computational resources. Parallelism represents a suitable paradigm for overcoming the DE challenges. The ensemble of differential evolution variants (EDEV) algorithm is a recent DE algorithm. EDEV constitutes three DE variants (JADE, CoDE, and EPSDE), which may decrease its speedup. In this paper, a multi-population parallel ensemble of differential evolution variants (MPPEDEV) is proposed based on the synchronous master/slave parallel model. The performance of the proposed MPPEDEV is tested using a constrained real parameter problem proposed in CEC 2006. Compared to four state-of-the-art DE algorithms, which are JADE, CoDE, EPSDE, and EDEV, the results show that MPPEDEV outperforms EDEV in terms of execution time and solutions quality, depending on the population size as a control parameter. Furthermore, MPPEDEV and EDEV outperform JADE, CoDE, and EPSDE in terms of solutions' quality.\",\"PeriodicalId\":288133,\"journal\":{\"name\":\"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDiS57230.2022.9996477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDiS57230.2022.9996477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

差分进化(DE)算法面临着性能方面的挑战,这些挑战依赖于提高解的质量、加速和对计算资源的利用。并行性代表了克服DE挑战的合适范例。差分进化变体集成(EDEV)算法是一种最新的差分进化算法。EDEV包含三个DE变体(JADE、CoDE和EPSDE),这可能会降低其加速。提出了一种基于同步主从并行模型的多种群差分进化变体并行集成(MPPEDEV)算法。利用CEC 2006中提出的约束实参数问题对所提出的MPPEDEV的性能进行了测试。与JADE、CoDE、EPSDE和EDEV这四种最先进的DE算法相比,结果表明MPPEDEV在执行时间和解决方案质量方面优于EDEV,这取决于作为控制参数的种群大小。此外,MPPEDEV和EDEV在解决方案质量上优于JADE、CoDE和EPSDE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Population-based Parallelization of Ensemble of Differential Evolution Variants for Constrained Real Parameter Optimization
Differential evolution (DE) algorithms face performance challenges, which lean on improving solutions quality, speed-up, and exploitation of computational resources. Parallelism represents a suitable paradigm for overcoming the DE challenges. The ensemble of differential evolution variants (EDEV) algorithm is a recent DE algorithm. EDEV constitutes three DE variants (JADE, CoDE, and EPSDE), which may decrease its speedup. In this paper, a multi-population parallel ensemble of differential evolution variants (MPPEDEV) is proposed based on the synchronous master/slave parallel model. The performance of the proposed MPPEDEV is tested using a constrained real parameter problem proposed in CEC 2006. Compared to four state-of-the-art DE algorithms, which are JADE, CoDE, EPSDE, and EDEV, the results show that MPPEDEV outperforms EDEV in terms of execution time and solutions quality, depending on the population size as a control parameter. Furthermore, MPPEDEV and EDEV outperform JADE, CoDE, and EPSDE in terms of solutions' quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信