迈向可穿戴数据同化平台

Philip P. Graybill, B. Gluckman, M. Kiani
{"title":"迈向可穿戴数据同化平台","authors":"Philip P. Graybill, B. Gluckman, M. Kiani","doi":"10.1109/BIOCAS.2019.8919195","DOIUrl":null,"url":null,"abstract":"Data assimilation (DA) refers to a family of methods used to synchronize a dynamical model to sparse or noisy measurements of model states. In this paper, we propose a wearable DA platform for neurological research and report our progress in translating a DA computational framework from desktop computation to embedded computation. The unscented Kalman filter (UKF) and a neural mass model (NMM) for sleep-wake regulation are introduced. Next, selection of suitable UKF parameters through MATLAB simulations is described. Finally, four variations of the DA framework are run on an embedded microprocessor in order to find the variation that minimizes computation time while maintaining state reconstruction accuracy. By reducing computational precision of the equation integrator and using a piecewise-linear approximation in place of the tanh function, we increased computational speed by a factor of 3.6 while maintaining a high level of state reconstruction fidelity.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Toward a Wearable Data Assimilation Platform\",\"authors\":\"Philip P. Graybill, B. Gluckman, M. Kiani\",\"doi\":\"10.1109/BIOCAS.2019.8919195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data assimilation (DA) refers to a family of methods used to synchronize a dynamical model to sparse or noisy measurements of model states. In this paper, we propose a wearable DA platform for neurological research and report our progress in translating a DA computational framework from desktop computation to embedded computation. The unscented Kalman filter (UKF) and a neural mass model (NMM) for sleep-wake regulation are introduced. Next, selection of suitable UKF parameters through MATLAB simulations is described. Finally, four variations of the DA framework are run on an embedded microprocessor in order to find the variation that minimizes computation time while maintaining state reconstruction accuracy. By reducing computational precision of the equation integrator and using a piecewise-linear approximation in place of the tanh function, we increased computational speed by a factor of 3.6 while maintaining a high level of state reconstruction fidelity.\",\"PeriodicalId\":222264,\"journal\":{\"name\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2019.8919195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8919195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据同化(Data assimilation, DA)是指用于将动态模型与模型状态的稀疏或有噪声测量数据同步的一系列方法。在本文中,我们提出了一种用于神经学研究的可穿戴数据处理平台,并报告了我们在将数据处理计算框架从桌面计算转换为嵌入式计算方面的进展。介绍了用于睡眠-觉醒调节的无气味卡尔曼滤波(UKF)和神经质量模型(NMM)。其次,通过MATLAB仿真选择合适的UKF参数。最后,在嵌入式微处理器上运行了四种DA框架的变体,以找到在保持状态重建精度的同时最小化计算时间的变体。通过降低方程积分器的计算精度,并使用分段线性近似代替tanh函数,我们将计算速度提高了3.6倍,同时保持了高水平的状态重建保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a Wearable Data Assimilation Platform
Data assimilation (DA) refers to a family of methods used to synchronize a dynamical model to sparse or noisy measurements of model states. In this paper, we propose a wearable DA platform for neurological research and report our progress in translating a DA computational framework from desktop computation to embedded computation. The unscented Kalman filter (UKF) and a neural mass model (NMM) for sleep-wake regulation are introduced. Next, selection of suitable UKF parameters through MATLAB simulations is described. Finally, four variations of the DA framework are run on an embedded microprocessor in order to find the variation that minimizes computation time while maintaining state reconstruction accuracy. By reducing computational precision of the equation integrator and using a piecewise-linear approximation in place of the tanh function, we increased computational speed by a factor of 3.6 while maintaining a high level of state reconstruction fidelity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信