图形处理器中GraphCut图像拼接的高效启发式算法

Tai Nguyen, Minh Bui, Huong Ninh, T. Nguyen, H. Tran
{"title":"图形处理器中GraphCut图像拼接的高效启发式算法","authors":"Tai Nguyen, Minh Bui, Huong Ninh, T. Nguyen, H. Tran","doi":"10.1109/PAAP56126.2022.10010453","DOIUrl":null,"url":null,"abstract":"GraphCut algorithm has been widely utilized to solve various types of computer vision problems. Its expensive computational cost encouraged many researchers to improve the speed of the algorithm. Recent works proposed schemes that work on parallel computing platforms such as CUDA. However, the problem of low convergence speed prevents the usage of GraphCut for real time applications. In this paper, we propose global suppression heuristic to boost the convergence process of the algorithm. A parallel implementation of GraphCut algorithm on CUDA designed for the image stitching problem is introduced. Our method achieves up to 3× time boost on the graph of size 80×480 compared to the best sequential GraphCut algorithm while achieving satisfactory stitched images, suitable for panorama applications. Our source code will be soon available for further research.","PeriodicalId":336339,"journal":{"name":"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Heuristic Algorithm to Speed up GraphCut in GPU for Image Stitching\",\"authors\":\"Tai Nguyen, Minh Bui, Huong Ninh, T. Nguyen, H. Tran\",\"doi\":\"10.1109/PAAP56126.2022.10010453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GraphCut algorithm has been widely utilized to solve various types of computer vision problems. Its expensive computational cost encouraged many researchers to improve the speed of the algorithm. Recent works proposed schemes that work on parallel computing platforms such as CUDA. However, the problem of low convergence speed prevents the usage of GraphCut for real time applications. In this paper, we propose global suppression heuristic to boost the convergence process of the algorithm. A parallel implementation of GraphCut algorithm on CUDA designed for the image stitching problem is introduced. Our method achieves up to 3× time boost on the graph of size 80×480 compared to the best sequential GraphCut algorithm while achieving satisfactory stitched images, suitable for panorama applications. Our source code will be soon available for further research.\",\"PeriodicalId\":336339,\"journal\":{\"name\":\"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAAP56126.2022.10010453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP56126.2022.10010453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

GraphCut算法已被广泛应用于解决各种类型的计算机视觉问题。其昂贵的计算成本促使许多研究人员提高算法的速度。最近的工作提出了在并行计算平台(如CUDA)上工作的方案。然而,低收敛速度的问题阻碍了GraphCut在实时应用中的使用。为了提高算法的收敛速度,本文提出了全局抑制启发式算法。介绍了一种针对图像拼接问题的GraphCut算法在CUDA上的并行实现。与最佳顺序GraphCut算法相比,我们的方法在尺寸为80×480的图形上实现了高达3倍的时间提升,同时获得了令人满意的拼接图像,适合全景应用。我们的源代码将很快提供给进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Heuristic Algorithm to Speed up GraphCut in GPU for Image Stitching
GraphCut algorithm has been widely utilized to solve various types of computer vision problems. Its expensive computational cost encouraged many researchers to improve the speed of the algorithm. Recent works proposed schemes that work on parallel computing platforms such as CUDA. However, the problem of low convergence speed prevents the usage of GraphCut for real time applications. In this paper, we propose global suppression heuristic to boost the convergence process of the algorithm. A parallel implementation of GraphCut algorithm on CUDA designed for the image stitching problem is introduced. Our method achieves up to 3× time boost on the graph of size 80×480 compared to the best sequential GraphCut algorithm while achieving satisfactory stitched images, suitable for panorama applications. Our source code will be soon available for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信