旋转经验正交函数分析用于时空数据分析

S. Debnath
{"title":"旋转经验正交函数分析用于时空数据分析","authors":"S. Debnath","doi":"10.26782/jmcms.2022.04.00003","DOIUrl":null,"url":null,"abstract":"Given any space-time field, Empirical orthogonal function (EOF) analysis finds a set of orthogonal spatial patterns along with a set of associated uncorrelated time series or principal components (PCs). Spatial orthogonality and temporal uncorrelation of EOFs and PCs respectively impose limits on the physical interpretability of EOF patterns. This is because physical processes are not independent, and therefore physical modes are expected in general to be non-orthogonal. Rotated empirical orthogonal functions (REOF) were introduced to generate general localized structures by compromising some of the EOF properties such as orthogonality. EOF and REOF analysis are carried out for the significant wave height (SWH) data for the Bay of Bengal (BOB) region for the period 1958 to 2001. Separate experiments were conducted for all the months together and also for July and December representing the southwest and northeast monsoon periods. The first eigenmodes account for 84%, 68%, and 59% of the total variability for the above three cases respectively. The REOF proved to be more effective than EOF for the above region.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROTATED EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS FOR SPATIO-TEMPORAL DATA ANALYSIS\",\"authors\":\"S. Debnath\",\"doi\":\"10.26782/jmcms.2022.04.00003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given any space-time field, Empirical orthogonal function (EOF) analysis finds a set of orthogonal spatial patterns along with a set of associated uncorrelated time series or principal components (PCs). Spatial orthogonality and temporal uncorrelation of EOFs and PCs respectively impose limits on the physical interpretability of EOF patterns. This is because physical processes are not independent, and therefore physical modes are expected in general to be non-orthogonal. Rotated empirical orthogonal functions (REOF) were introduced to generate general localized structures by compromising some of the EOF properties such as orthogonality. EOF and REOF analysis are carried out for the significant wave height (SWH) data for the Bay of Bengal (BOB) region for the period 1958 to 2001. Separate experiments were conducted for all the months together and also for July and December representing the southwest and northeast monsoon periods. The first eigenmodes account for 84%, 68%, and 59% of the total variability for the above three cases respectively. The REOF proved to be more effective than EOF for the above region.\",\"PeriodicalId\":254600,\"journal\":{\"name\":\"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26782/jmcms.2022.04.00003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2022.04.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定任何时空场,经验正交函数(EOF)分析可以找到一组正交空间模式以及一组相关的不相关时间序列或主成分(PCs)。EOF模式的空间正交性和时间不相关性分别限制了EOF模式的物理可解释性。这是因为物理过程不是独立的,因此物理模式通常是非正交的。引入旋转经验正交函数(REOF),通过牺牲其正交性等特性来生成一般局域结构。对1958 ~ 2001年孟加拉湾(BOB)地区的有效波高(SWH)资料进行了EOF和REOF分析。对所有月份以及代表西南和东北季风期的7月和12月进行了单独的实验。在上述三种情况下,第一特征模态分别占总变率的84%、68%和59%。在上述区域,REOF比EOF更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ROTATED EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS FOR SPATIO-TEMPORAL DATA ANALYSIS
Given any space-time field, Empirical orthogonal function (EOF) analysis finds a set of orthogonal spatial patterns along with a set of associated uncorrelated time series or principal components (PCs). Spatial orthogonality and temporal uncorrelation of EOFs and PCs respectively impose limits on the physical interpretability of EOF patterns. This is because physical processes are not independent, and therefore physical modes are expected in general to be non-orthogonal. Rotated empirical orthogonal functions (REOF) were introduced to generate general localized structures by compromising some of the EOF properties such as orthogonality. EOF and REOF analysis are carried out for the significant wave height (SWH) data for the Bay of Bengal (BOB) region for the period 1958 to 2001. Separate experiments were conducted for all the months together and also for July and December representing the southwest and northeast monsoon periods. The first eigenmodes account for 84%, 68%, and 59% of the total variability for the above three cases respectively. The REOF proved to be more effective than EOF for the above region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信