对数似然法选择多通道非负矩阵分解的初始值

Fuminori Yoshiyama, Shingo Uenohara, Keisuke Nishijima, Yusuke Hioka, K. Furuya
{"title":"对数似然法选择多通道非负矩阵分解的初始值","authors":"Fuminori Yoshiyama, Shingo Uenohara, Keisuke Nishijima, Yusuke Hioka, K. Furuya","doi":"10.1109/ICCE-TW.2015.7216813","DOIUrl":null,"url":null,"abstract":"A multichannel extension of non-negative matrix factorization (NMF) associates the spatial property of the sources with each of the NMF bases. An initial-value selection method based on log-likelihood for multichannel non-negative matrix factorization (MNMF) is introduced to reduce the variation of the source separation performance. Experimental results showed selecting initial values that provide high log-likelihood would improve the source separation performance of MNMF depending on the sources.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Log-likelihood method to select initial values of multichannel non-negative matrix factorization\",\"authors\":\"Fuminori Yoshiyama, Shingo Uenohara, Keisuke Nishijima, Yusuke Hioka, K. Furuya\",\"doi\":\"10.1109/ICCE-TW.2015.7216813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multichannel extension of non-negative matrix factorization (NMF) associates the spatial property of the sources with each of the NMF bases. An initial-value selection method based on log-likelihood for multichannel non-negative matrix factorization (MNMF) is introduced to reduce the variation of the source separation performance. Experimental results showed selecting initial values that provide high log-likelihood would improve the source separation performance of MNMF depending on the sources.\",\"PeriodicalId\":340402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2015.7216813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

非负矩阵分解(NMF)的多通道扩展将源的空间特性与每个NMF基相关联。提出了一种基于对数似然的多通道非负矩阵分解(MNMF)初始值选择方法,以减小源分离性能的变化。实验结果表明,选择具有高对数似然的初始值可以提高MNMF的源分离性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Log-likelihood method to select initial values of multichannel non-negative matrix factorization
A multichannel extension of non-negative matrix factorization (NMF) associates the spatial property of the sources with each of the NMF bases. An initial-value selection method based on log-likelihood for multichannel non-negative matrix factorization (MNMF) is introduced to reduce the variation of the source separation performance. Experimental results showed selecting initial values that provide high log-likelihood would improve the source separation performance of MNMF depending on the sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信