超参数优化中的全局搜索与局部搜索

Yoshihiko Ozaki, Shintaro Takenaga, Masaki Onishi
{"title":"超参数优化中的全局搜索与局部搜索","authors":"Yoshihiko Ozaki, Shintaro Takenaga, Masaki Onishi","doi":"10.1109/CEC55065.2022.9870287","DOIUrl":null,"url":null,"abstract":"Hyperparameter optimization (HPO) is a compu-tationally expensive blackbox optimization problem to maximize the performance of a machine learning model by tuning the model hyperparameters. Conventionally, global search has been widely adopted rather than local search to address HPO. In this study, we investigate whether this conventional choice is reasonable by empirically comparing popular global and local search methods as applied to HPO problems. The numerical results demonstrate that local search methods consistently achieve results that are comparable to or better than those of the global search methods, i.e., local search is a more reasonable choice for HPO. We also report the findings of detailed analyses of the experimental data conducted to understand how each method functions and the objective landscapes of HPO.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global Search versus Local Search in Hyperparameter Optimization\",\"authors\":\"Yoshihiko Ozaki, Shintaro Takenaga, Masaki Onishi\",\"doi\":\"10.1109/CEC55065.2022.9870287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperparameter optimization (HPO) is a compu-tationally expensive blackbox optimization problem to maximize the performance of a machine learning model by tuning the model hyperparameters. Conventionally, global search has been widely adopted rather than local search to address HPO. In this study, we investigate whether this conventional choice is reasonable by empirically comparing popular global and local search methods as applied to HPO problems. The numerical results demonstrate that local search methods consistently achieve results that are comparable to or better than those of the global search methods, i.e., local search is a more reasonable choice for HPO. We also report the findings of detailed analyses of the experimental data conducted to understand how each method functions and the objective landscapes of HPO.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超参数优化(HPO)是一个计算代价昂贵的黑盒优化问题,通过调整模型的超参数来最大化机器学习模型的性能。传统上,解决HPO问题普遍采用全局搜索而不是局部搜索。在这项研究中,我们通过实证比较流行的全局和局部搜索方法,来研究这种传统的选择是否合理。数值结果表明,局部搜索方法得到的结果始终与全局搜索方法相当或更好,即局部搜索是HPO更合理的选择。我们还报告了对实验数据进行详细分析的结果,以了解每种方法的功能和HPO的客观景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Search versus Local Search in Hyperparameter Optimization
Hyperparameter optimization (HPO) is a compu-tationally expensive blackbox optimization problem to maximize the performance of a machine learning model by tuning the model hyperparameters. Conventionally, global search has been widely adopted rather than local search to address HPO. In this study, we investigate whether this conventional choice is reasonable by empirically comparing popular global and local search methods as applied to HPO problems. The numerical results demonstrate that local search methods consistently achieve results that are comparable to or better than those of the global search methods, i.e., local search is a more reasonable choice for HPO. We also report the findings of detailed analyses of the experimental data conducted to understand how each method functions and the objective landscapes of HPO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信