{"title":"具有局部周期系数的Beltrami方程的Riemann-Hilbert问题的平均算子估计","authors":"M. Sirazhudinov, L. Dzhabrailova","doi":"10.31029/demr.16.4","DOIUrl":null,"url":null,"abstract":"Local characteristics of mathematical models of strongly inhomogeneous media are usually described by functions of the form $a(\\varepsilon^{-1} x)$, $b(x,\\varepsilon^{-1} x)$, $c(\\varepsilon^{-1} x,\\delta^{-1} x)$, $d(\\varepsilon^{-1} x,\\delta^{-1} x,\\gamma^{-1} x)$, etc., where $\\varepsilon$, $\\delta$, $\\gamma,\\ldots>0$ --- small parameters, while functions $a$, $b$, $c$, $d$, $\\ldots$ have an ordered structure (for example, they are periodic in variables $y=\\varepsilon^{-1} x$, $z=\\delta^{-1} x$, etc.). Consequently, the corresponding mathematical models are differential equations with rapidly oscillating coefficients. This work is devoted to estimates of the averaging error. We study the generalized Beltrami equation with a locally periodic coefficient $\\mu(x,\\varepsilon^{-1} x)$.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"179 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator estimates for the averaging of the Riemann-Hilbert problem for the Beltrami equation with a locally periodic coefficient\",\"authors\":\"M. Sirazhudinov, L. Dzhabrailova\",\"doi\":\"10.31029/demr.16.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local characteristics of mathematical models of strongly inhomogeneous media are usually described by functions of the form $a(\\\\varepsilon^{-1} x)$, $b(x,\\\\varepsilon^{-1} x)$, $c(\\\\varepsilon^{-1} x,\\\\delta^{-1} x)$, $d(\\\\varepsilon^{-1} x,\\\\delta^{-1} x,\\\\gamma^{-1} x)$, etc., where $\\\\varepsilon$, $\\\\delta$, $\\\\gamma,\\\\ldots>0$ --- small parameters, while functions $a$, $b$, $c$, $d$, $\\\\ldots$ have an ordered structure (for example, they are periodic in variables $y=\\\\varepsilon^{-1} x$, $z=\\\\delta^{-1} x$, etc.). Consequently, the corresponding mathematical models are differential equations with rapidly oscillating coefficients. This work is devoted to estimates of the averaging error. We study the generalized Beltrami equation with a locally periodic coefficient $\\\\mu(x,\\\\varepsilon^{-1} x)$.\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"179 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.16.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.16.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operator estimates for the averaging of the Riemann-Hilbert problem for the Beltrami equation with a locally periodic coefficient
Local characteristics of mathematical models of strongly inhomogeneous media are usually described by functions of the form $a(\varepsilon^{-1} x)$, $b(x,\varepsilon^{-1} x)$, $c(\varepsilon^{-1} x,\delta^{-1} x)$, $d(\varepsilon^{-1} x,\delta^{-1} x,\gamma^{-1} x)$, etc., where $\varepsilon$, $\delta$, $\gamma,\ldots>0$ --- small parameters, while functions $a$, $b$, $c$, $d$, $\ldots$ have an ordered structure (for example, they are periodic in variables $y=\varepsilon^{-1} x$, $z=\delta^{-1} x$, etc.). Consequently, the corresponding mathematical models are differential equations with rapidly oscillating coefficients. This work is devoted to estimates of the averaging error. We study the generalized Beltrami equation with a locally periodic coefficient $\mu(x,\varepsilon^{-1} x)$.