基于差异的鸟类生物声学监测分类

J. Ruiz-Muñoz, M. Orozco-Alzate
{"title":"基于差异的鸟类生物声学监测分类","authors":"J. Ruiz-Muñoz, M. Orozco-Alzate","doi":"10.1109/LARC.2011.6086822","DOIUrl":null,"url":null,"abstract":"The wealth of biodiversity is difficult to estimate because field inspections are exhausting and expensive. However, automatic monitoring systems can be a feasible option to partially overcome such a drawback. In this study, we present a process of bioacoustic recognition based on digital signal processing and pattern recognition techniques. On top of representations extracted from waveforms and spectra as well as computed by dissimilarities between pairs of them, we build classifiers for identifying 11 species in a data set of bird sounds recorded in the Colombian mountains. Results show that time-varying representations are a particularly good option for characterizing signals in this problem.","PeriodicalId":419849,"journal":{"name":"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissimilarity-based classification for bioacoustic monitoring of bird species\",\"authors\":\"J. Ruiz-Muñoz, M. Orozco-Alzate\",\"doi\":\"10.1109/LARC.2011.6086822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wealth of biodiversity is difficult to estimate because field inspections are exhausting and expensive. However, automatic monitoring systems can be a feasible option to partially overcome such a drawback. In this study, we present a process of bioacoustic recognition based on digital signal processing and pattern recognition techniques. On top of representations extracted from waveforms and spectra as well as computed by dissimilarities between pairs of them, we build classifiers for identifying 11 species in a data set of bird sounds recorded in the Colombian mountains. Results show that time-varying representations are a particularly good option for characterizing signals in this problem.\",\"PeriodicalId\":419849,\"journal\":{\"name\":\"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LARC.2011.6086822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LARC.2011.6086822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物多样性的丰富性很难估计,因为实地考察既费力又昂贵。然而,自动监测系统是一种可行的选择,可以部分地克服这种缺点。在这项研究中,我们提出了一个基于数字信号处理和模式识别技术的生物声学识别过程。在从波形和光谱中提取的表征以及通过它们对之间的不相似性计算的基础上,我们建立了分类器,用于识别哥伦比亚山区记录的鸟类声音数据集中的11种物种。结果表明,时变表示是这个问题中表征信号的一个特别好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissimilarity-based classification for bioacoustic monitoring of bird species
The wealth of biodiversity is difficult to estimate because field inspections are exhausting and expensive. However, automatic monitoring systems can be a feasible option to partially overcome such a drawback. In this study, we present a process of bioacoustic recognition based on digital signal processing and pattern recognition techniques. On top of representations extracted from waveforms and spectra as well as computed by dissimilarities between pairs of them, we build classifiers for identifying 11 species in a data set of bird sounds recorded in the Colombian mountains. Results show that time-varying representations are a particularly good option for characterizing signals in this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信