{"title":"某些超越函数的精确单调逼近","authors":"W. Ferguson, T. Brightman","doi":"10.1109/ARITH.1991.145566","DOIUrl":null,"url":null,"abstract":"A technique for computing monotonicity preserving approximations F/sub a/(x) of a function F(x) is presented. This technique involves computing an extra precise approximation of F(x) that is rounded to produce the value of F/sub a/(x). For example, only a few extra bits of precision are used to make the accurate transcendental functions found on the Cyrix FasMath line of 80387 compatible math coprocessors monotonic.<<ETX>>","PeriodicalId":190650,"journal":{"name":"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Accurate and monotone approximations of some transcendental functions\",\"authors\":\"W. Ferguson, T. Brightman\",\"doi\":\"10.1109/ARITH.1991.145566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique for computing monotonicity preserving approximations F/sub a/(x) of a function F(x) is presented. This technique involves computing an extra precise approximation of F(x) that is rounded to produce the value of F/sub a/(x). For example, only a few extra bits of precision are used to make the accurate transcendental functions found on the Cyrix FasMath line of 80387 compatible math coprocessors monotonic.<<ETX>>\",\"PeriodicalId\":190650,\"journal\":{\"name\":\"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1991.145566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1991.145566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate and monotone approximations of some transcendental functions
A technique for computing monotonicity preserving approximations F/sub a/(x) of a function F(x) is presented. This technique involves computing an extra precise approximation of F(x) that is rounded to produce the value of F/sub a/(x). For example, only a few extra bits of precision are used to make the accurate transcendental functions found on the Cyrix FasMath line of 80387 compatible math coprocessors monotonic.<>