{"title":"无相干多视图:在GPU上启用参考识别数据放置","authors":"Guoyang Chen, Xipeng Shen","doi":"10.1145/2925426.2926277","DOIUrl":null,"url":null,"abstract":"A Graphic Processing Unit (GPU) system is typically equipped with many types of memory (e.g., global, constant, texture, shared, cache). Data placement determines what data are placed on which type of memory, essential for GPU memory performance. Prior optimizations of data placement always require a single view of a data object on memory, which limits the optimization effectiveness. In this work, we propose coherence-free multiview, an approach that allows multiple views of a single data object to co-exist on GPU memory during a GPU kernel execution. We demonstrate that under certain conditions, the multiple views can remain incoherent while facilitating enhanced data placement. We present a theorem and some compiler support to ensure the soundness of the usage of coherence-free multiview. We further develop reference-discerning data placement, a new way to enhance data placements on GPU. It enables more flexible data placements by using coherence-free multiview to leverage the slack in coherence requirement of some GPU programs. Experiments on three types of GPU systems show that, with less than 200KB space cost, the new data placement technique can provide a 1.6X average (up to 4.27X) speedup.","PeriodicalId":422112,"journal":{"name":"Proceedings of the 2016 International Conference on Supercomputing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Coherence-Free Multiview: Enabling Reference-Discerning Data Placement on GPU\",\"authors\":\"Guoyang Chen, Xipeng Shen\",\"doi\":\"10.1145/2925426.2926277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Graphic Processing Unit (GPU) system is typically equipped with many types of memory (e.g., global, constant, texture, shared, cache). Data placement determines what data are placed on which type of memory, essential for GPU memory performance. Prior optimizations of data placement always require a single view of a data object on memory, which limits the optimization effectiveness. In this work, we propose coherence-free multiview, an approach that allows multiple views of a single data object to co-exist on GPU memory during a GPU kernel execution. We demonstrate that under certain conditions, the multiple views can remain incoherent while facilitating enhanced data placement. We present a theorem and some compiler support to ensure the soundness of the usage of coherence-free multiview. We further develop reference-discerning data placement, a new way to enhance data placements on GPU. It enables more flexible data placements by using coherence-free multiview to leverage the slack in coherence requirement of some GPU programs. Experiments on three types of GPU systems show that, with less than 200KB space cost, the new data placement technique can provide a 1.6X average (up to 4.27X) speedup.\",\"PeriodicalId\":422112,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Supercomputing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2925426.2926277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2925426.2926277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coherence-Free Multiview: Enabling Reference-Discerning Data Placement on GPU
A Graphic Processing Unit (GPU) system is typically equipped with many types of memory (e.g., global, constant, texture, shared, cache). Data placement determines what data are placed on which type of memory, essential for GPU memory performance. Prior optimizations of data placement always require a single view of a data object on memory, which limits the optimization effectiveness. In this work, we propose coherence-free multiview, an approach that allows multiple views of a single data object to co-exist on GPU memory during a GPU kernel execution. We demonstrate that under certain conditions, the multiple views can remain incoherent while facilitating enhanced data placement. We present a theorem and some compiler support to ensure the soundness of the usage of coherence-free multiview. We further develop reference-discerning data placement, a new way to enhance data placements on GPU. It enables more flexible data placements by using coherence-free multiview to leverage the slack in coherence requirement of some GPU programs. Experiments on three types of GPU systems show that, with less than 200KB space cost, the new data placement technique can provide a 1.6X average (up to 4.27X) speedup.