改进了二进制线性码停止冗余的上界

Yauhen Yakimenka, Vitaly Skachek
{"title":"改进了二进制线性码停止冗余的上界","authors":"Yauhen Yakimenka, Vitaly Skachek","doi":"10.1109/ITW.2015.7133087","DOIUrl":null,"url":null,"abstract":"The l-th stopping redundancy ρ<sub>ι</sub>(C) of the binary [n, k, d] code C, 1 ≤ l ≤ d, is defined as the minimum number of rows in the parity-check matrix of C, such that the smallest stopping set is of size at least l. The stopping redundancy ρ(C) is defined as ρ<sub>d</sub>(C). In this work, we improve on the probabilistic analysis of stopping redundancy, proposed by Han, Siegel and Vardy, which yields the best bounds known today. In our approach, we judiciously select the first few rows in the parity-check matrix, and then continue with the probabilistic method. By using similar techniques, we improve also on the best known bounds on ρ<sub>ι</sub>(C), for 1 ≤ l ≤ d. Our approach is compared to the existing methods by numerical computations.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Refined upper bounds on stopping redundancy of binary linear codes\",\"authors\":\"Yauhen Yakimenka, Vitaly Skachek\",\"doi\":\"10.1109/ITW.2015.7133087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The l-th stopping redundancy ρ<sub>ι</sub>(C) of the binary [n, k, d] code C, 1 ≤ l ≤ d, is defined as the minimum number of rows in the parity-check matrix of C, such that the smallest stopping set is of size at least l. The stopping redundancy ρ(C) is defined as ρ<sub>d</sub>(C). In this work, we improve on the probabilistic analysis of stopping redundancy, proposed by Han, Siegel and Vardy, which yields the best bounds known today. In our approach, we judiciously select the first few rows in the parity-check matrix, and then continue with the probabilistic method. By using similar techniques, we improve also on the best known bounds on ρ<sub>ι</sub>(C), for 1 ≤ l ≤ d. Our approach is compared to the existing methods by numerical computations.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

定义二进制[n, k, d]码C, 1≤l≤d的第l个停止冗余ρι(C)为C的奇偶校验矩阵的最小行数,使得最小的停止集的大小至少为1,定义停止冗余ρ(C)为ρd(C)。在这项工作中,我们改进了由Han, Siegel和Vardy提出的停止冗余的概率分析,该分析产生了今天已知的最佳边界。在我们的方法中,我们明智地选择奇偶校验矩阵中的前几行,然后继续使用概率方法。通过使用类似的技术,我们还改进了1≤l≤d时ρι(C)的已知界。通过数值计算将我们的方法与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined upper bounds on stopping redundancy of binary linear codes
The l-th stopping redundancy ρι(C) of the binary [n, k, d] code C, 1 ≤ l ≤ d, is defined as the minimum number of rows in the parity-check matrix of C, such that the smallest stopping set is of size at least l. The stopping redundancy ρ(C) is defined as ρd(C). In this work, we improve on the probabilistic analysis of stopping redundancy, proposed by Han, Siegel and Vardy, which yields the best bounds known today. In our approach, we judiciously select the first few rows in the parity-check matrix, and then continue with the probabilistic method. By using similar techniques, we improve also on the best known bounds on ρι(C), for 1 ≤ l ≤ d. Our approach is compared to the existing methods by numerical computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信