{"title":"受人类启发的两足机器人行走设计框架","authors":"Ryan W. Sinnet, Shu Jiang, A. Ames","doi":"10.1504/IJBBR.2014.059275","DOIUrl":null,"url":null,"abstract":"This work seeks virtual constraints, or outputs, that are intrinsic to human walking and utilises these outputs to construct controllers which produce human-like bipedal robotic walking. Beginning with experimental human walking data, human outputs are sought, i.e., functions of the kinematics of the human over time, which provides a low-dimensional representation of human walking. It will be shown that, for these outputs, humans act like linear mass-spring-dampers; this yields a time representation of the human outputs through canonical walking functions. Combining these formulations leads to human-inspired controllers that, when utilised in an optimisation problem, provably result in robotic walking that is as ‘human-like’ as possible. This human-inspired approach is applied to multiple human output combinations, from which it is determined which output combination results in the most human-like walking for a robotic model with mean human parameters.","PeriodicalId":375470,"journal":{"name":"International Journal of Biomechatronics and Biomedical Robotics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A human-inspired framework for bipedal robotic walking design\",\"authors\":\"Ryan W. Sinnet, Shu Jiang, A. Ames\",\"doi\":\"10.1504/IJBBR.2014.059275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work seeks virtual constraints, or outputs, that are intrinsic to human walking and utilises these outputs to construct controllers which produce human-like bipedal robotic walking. Beginning with experimental human walking data, human outputs are sought, i.e., functions of the kinematics of the human over time, which provides a low-dimensional representation of human walking. It will be shown that, for these outputs, humans act like linear mass-spring-dampers; this yields a time representation of the human outputs through canonical walking functions. Combining these formulations leads to human-inspired controllers that, when utilised in an optimisation problem, provably result in robotic walking that is as ‘human-like’ as possible. This human-inspired approach is applied to multiple human output combinations, from which it is determined which output combination results in the most human-like walking for a robotic model with mean human parameters.\",\"PeriodicalId\":375470,\"journal\":{\"name\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBBR.2014.059275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomechatronics and Biomedical Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBBR.2014.059275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A human-inspired framework for bipedal robotic walking design
This work seeks virtual constraints, or outputs, that are intrinsic to human walking and utilises these outputs to construct controllers which produce human-like bipedal robotic walking. Beginning with experimental human walking data, human outputs are sought, i.e., functions of the kinematics of the human over time, which provides a low-dimensional representation of human walking. It will be shown that, for these outputs, humans act like linear mass-spring-dampers; this yields a time representation of the human outputs through canonical walking functions. Combining these formulations leads to human-inspired controllers that, when utilised in an optimisation problem, provably result in robotic walking that is as ‘human-like’ as possible. This human-inspired approach is applied to multiple human output combinations, from which it is determined which output combination results in the most human-like walking for a robotic model with mean human parameters.