三维目标识别与姿态估计的神经网络方法

M.-C. Lu, Chong-Huah Lo, H. Don
{"title":"三维目标识别与姿态估计的神经网络方法","authors":"M.-C. Lu, Chong-Huah Lo, H. Don","doi":"10.1109/IJCNN.1991.170781","DOIUrl":null,"url":null,"abstract":"A multistage concurrently processing artificial neural network is proposed to identify 3D unoccluded objects from arbitrary viewing angles and to estimate their poses. 3D moment invariants are used to generate feature vectors from 2-1/2D range images. Objects are recognized via moment invariants which are invariant to translation, scaling, and rotation. The proposed network is divided into two stages, the feature extraction stage and the feature detection stage, to generate moment invariants and detect the input features, respectively. Experimental results show that objects coded by 3D moment invariant features can always be satisfactorily classified and estimated by the proposed neural network.<<ETX>>","PeriodicalId":211135,"journal":{"name":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A neural network approach to 3D object identification and pose estimation\",\"authors\":\"M.-C. Lu, Chong-Huah Lo, H. Don\",\"doi\":\"10.1109/IJCNN.1991.170781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multistage concurrently processing artificial neural network is proposed to identify 3D unoccluded objects from arbitrary viewing angles and to estimate their poses. 3D moment invariants are used to generate feature vectors from 2-1/2D range images. Objects are recognized via moment invariants which are invariant to translation, scaling, and rotation. The proposed network is divided into two stages, the feature extraction stage and the feature detection stage, to generate moment invariants and detect the input features, respectively. Experimental results show that objects coded by 3D moment invariant features can always be satisfactorily classified and estimated by the proposed neural network.<<ETX>>\",\"PeriodicalId\":211135,\"journal\":{\"name\":\"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1991.170781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1991.170781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种多阶段并行处理的人工神经网络,用于任意视角下的三维无遮挡物体识别和姿态估计。利用三维矩不变量从2-1/2D距离图像中生成特征向量。对象是通过不变量来识别的,不变量对平移、缩放和旋转是不变量。该网络分为两个阶段,特征提取阶段和特征检测阶段,分别生成矩不变量和检测输入特征。实验结果表明,采用三维矩不变特征编码的神经网络总能很好地对目标进行分类和估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network approach to 3D object identification and pose estimation
A multistage concurrently processing artificial neural network is proposed to identify 3D unoccluded objects from arbitrary viewing angles and to estimate their poses. 3D moment invariants are used to generate feature vectors from 2-1/2D range images. Objects are recognized via moment invariants which are invariant to translation, scaling, and rotation. The proposed network is divided into two stages, the feature extraction stage and the feature detection stage, to generate moment invariants and detect the input features, respectively. Experimental results show that objects coded by 3D moment invariant features can always be satisfactorily classified and estimated by the proposed neural network.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信