基于字符串的rna -蛋白相互作用预测模型

D. Adjeroh, Maen Allaga, Jun Tan, Jie Lin, Yue Jiang, A. Abbasi, Xiaobo Zhou
{"title":"基于字符串的rna -蛋白相互作用预测模型","authors":"D. Adjeroh, Maen Allaga, Jun Tan, Jie Lin, Yue Jiang, A. Abbasi, Xiaobo Zhou","doi":"10.1145/3107411.3107508","DOIUrl":null,"url":null,"abstract":"In this work, we study string-based approaches for the problem of RNA-Protein Interaction (RPI). We apply string algorithms and data structures to extract effective string patterns for prediction of RPI, using both sequence information (protein and RNA sequences), and structure information (protein and RNA secondary structures). This led to different string-based models for predicting interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed string-based models, including comparative results against state-of-the-art methods.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"String-Based Models for Predicting RNA-Protein Interaction\",\"authors\":\"D. Adjeroh, Maen Allaga, Jun Tan, Jie Lin, Yue Jiang, A. Abbasi, Xiaobo Zhou\",\"doi\":\"10.1145/3107411.3107508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study string-based approaches for the problem of RNA-Protein Interaction (RPI). We apply string algorithms and data structures to extract effective string patterns for prediction of RPI, using both sequence information (protein and RNA sequences), and structure information (protein and RNA secondary structures). This led to different string-based models for predicting interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed string-based models, including comparative results against state-of-the-art methods.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3107508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3107508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了基于字符串的rna -蛋白质相互作用(RPI)问题的方法。我们利用序列信息(蛋白质和RNA序列)和结构信息(蛋白质和RNA二级结构),应用字符串算法和数据结构提取有效的字符串模式来预测RPI。这导致了不同的基于字符串的模型来预测相互作用的rna -蛋白对。我们展示的结果证明了所提出的基于字符串的模型的有效性,包括与最先进的方法的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
String-Based Models for Predicting RNA-Protein Interaction
In this work, we study string-based approaches for the problem of RNA-Protein Interaction (RPI). We apply string algorithms and data structures to extract effective string patterns for prediction of RPI, using both sequence information (protein and RNA sequences), and structure information (protein and RNA secondary structures). This led to different string-based models for predicting interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed string-based models, including comparative results against state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信