{"title":"水下横向磁通机的快速设计方法","authors":"C. Stoeffler, Michael Zipper, Jonathan Babel","doi":"10.23919/ICCAS52745.2021.9649755","DOIUrl":null,"url":null,"abstract":"In this work, we show a design procedure for Transverse Flux Machines that belong to the class of direct drives, which become more relevant in robotics - also for underwater applications. These drives exhibit a range of advantages, due to the omittance of gears. This usually requires that the geometry is adapted to the motor's use case, which is a demanding task. An analytical modeling approach, based on the work of Pourmoosa [15], is used in combination with the open-source software OpenModelica to simulate arbitrary designs of this type. This allows a fast simulation of a multitude of motors. In combination with a specifically constructed genetic algorithm, we show that preferable designs can be obtained under predefined performance parameters. The method therefore gives rise to useful pre-computations for drives of this kind and potentially allows their usage in more robotic applications.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rapid Design Approach for Transverse Flux Machines in Underwater Applications\",\"authors\":\"C. Stoeffler, Michael Zipper, Jonathan Babel\",\"doi\":\"10.23919/ICCAS52745.2021.9649755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we show a design procedure for Transverse Flux Machines that belong to the class of direct drives, which become more relevant in robotics - also for underwater applications. These drives exhibit a range of advantages, due to the omittance of gears. This usually requires that the geometry is adapted to the motor's use case, which is a demanding task. An analytical modeling approach, based on the work of Pourmoosa [15], is used in combination with the open-source software OpenModelica to simulate arbitrary designs of this type. This allows a fast simulation of a multitude of motors. In combination with a specifically constructed genetic algorithm, we show that preferable designs can be obtained under predefined performance parameters. The method therefore gives rise to useful pre-computations for drives of this kind and potentially allows their usage in more robotic applications.\",\"PeriodicalId\":411064,\"journal\":{\"name\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS52745.2021.9649755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9649755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Rapid Design Approach for Transverse Flux Machines in Underwater Applications
In this work, we show a design procedure for Transverse Flux Machines that belong to the class of direct drives, which become more relevant in robotics - also for underwater applications. These drives exhibit a range of advantages, due to the omittance of gears. This usually requires that the geometry is adapted to the motor's use case, which is a demanding task. An analytical modeling approach, based on the work of Pourmoosa [15], is used in combination with the open-source software OpenModelica to simulate arbitrary designs of this type. This allows a fast simulation of a multitude of motors. In combination with a specifically constructed genetic algorithm, we show that preferable designs can be obtained under predefined performance parameters. The method therefore gives rise to useful pre-computations for drives of this kind and potentially allows their usage in more robotic applications.