一类几何问题中求最大值和最小值的一般方法

D. Dobkin, Lawrence Snyder
{"title":"一类几何问题中求最大值和最小值的一般方法","authors":"D. Dobkin, Lawrence Snyder","doi":"10.1109/SFCS.1979.28","DOIUrl":null,"url":null,"abstract":"Problems concerned with finding inscribing or circumscribing polygons that maximize some measurement are considered such as: Find an area maximizing triangle inscribed in a given convex polygon. Algorithms solving a number of these problems in linear time are presented. They use the common approach of finding an initial solution with respect to a fixed bounding point and then iteratively transforming this solution into a new solution with respect to a new point. The generality of this approach is discussed and several open problems are noted.","PeriodicalId":311166,"journal":{"name":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"On a general method for maximizing and minimizing among certain geometric problems\",\"authors\":\"D. Dobkin, Lawrence Snyder\",\"doi\":\"10.1109/SFCS.1979.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problems concerned with finding inscribing or circumscribing polygons that maximize some measurement are considered such as: Find an area maximizing triangle inscribed in a given convex polygon. Algorithms solving a number of these problems in linear time are presented. They use the common approach of finding an initial solution with respect to a fixed bounding point and then iteratively transforming this solution into a new solution with respect to a new point. The generality of this approach is discussed and several open problems are noted.\",\"PeriodicalId\":311166,\"journal\":{\"name\":\"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1979.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Annual Symposium on Foundations of Computer Science (sfcs 1979)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1979.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

摘要

寻找能使某些测量值最大化的雕刻多边形或边缘多边形的问题被考虑如下:在给定的凸多边形中找到一个面积最大化的三角形。提出了在线性时间内解决这些问题的算法。它们使用的是关于一个固定边界点的初始解,然后迭代地将这个解转化为关于一个新点的新解。讨论了这种方法的一般性,并指出了几个有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a general method for maximizing and minimizing among certain geometric problems
Problems concerned with finding inscribing or circumscribing polygons that maximize some measurement are considered such as: Find an area maximizing triangle inscribed in a given convex polygon. Algorithms solving a number of these problems in linear time are presented. They use the common approach of finding an initial solution with respect to a fixed bounding point and then iteratively transforming this solution into a new solution with respect to a new point. The generality of this approach is discussed and several open problems are noted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信