Shinichi Nagano, Masumi Inaba, Y. Mizoguchi, Takahiro Kawamura
{"title":"从博客中提取主题消费品","authors":"Shinichi Nagano, Masumi Inaba, Y. Mizoguchi, Takahiro Kawamura","doi":"10.1609/icwsm.v2i1.18656","DOIUrl":null,"url":null,"abstract":"This paper proposes a new algorithm of associated topic extraction, which detects related topics in a collection of blog entries commenting on a specified topic. The main feature of the algorithm is to evaluate how important a topic is to the collection, according to the popularity of blog entries through Trackbacks and comments. Another feature is to utilize product ontology for excluding unrelated topics. Evaluation results show that the proposed algorithm can capture users' impressions of associated topics more accurately than TF-IDF.","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extraction of Topical Consumer Products from Weblogs\",\"authors\":\"Shinichi Nagano, Masumi Inaba, Y. Mizoguchi, Takahiro Kawamura\",\"doi\":\"10.1609/icwsm.v2i1.18656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new algorithm of associated topic extraction, which detects related topics in a collection of blog entries commenting on a specified topic. The main feature of the algorithm is to evaluate how important a topic is to the collection, according to the popularity of blog entries through Trackbacks and comments. Another feature is to utilize product ontology for excluding unrelated topics. Evaluation results show that the proposed algorithm can capture users' impressions of associated topics more accurately than TF-IDF.\",\"PeriodicalId\":338112,\"journal\":{\"name\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v2i1.18656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v2i1.18656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extraction of Topical Consumer Products from Weblogs
This paper proposes a new algorithm of associated topic extraction, which detects related topics in a collection of blog entries commenting on a specified topic. The main feature of the algorithm is to evaluate how important a topic is to the collection, according to the popularity of blog entries through Trackbacks and comments. Another feature is to utilize product ontology for excluding unrelated topics. Evaluation results show that the proposed algorithm can capture users' impressions of associated topics more accurately than TF-IDF.