从博客中提取主题消费品

Shinichi Nagano, Masumi Inaba, Y. Mizoguchi, Takahiro Kawamura
{"title":"从博客中提取主题消费品","authors":"Shinichi Nagano, Masumi Inaba, Y. Mizoguchi, Takahiro Kawamura","doi":"10.1609/icwsm.v2i1.18656","DOIUrl":null,"url":null,"abstract":"This paper proposes a new algorithm of associated topic extraction, which detects related topics in a collection of blog entries commenting on a specified topic. The main feature of the algorithm is to evaluate how important a topic is to the collection, according to the popularity of blog entries through Trackbacks and comments. Another feature is to utilize product ontology for excluding unrelated topics. Evaluation results show that the proposed algorithm can capture users' impressions of associated topics more accurately than TF-IDF.","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extraction of Topical Consumer Products from Weblogs\",\"authors\":\"Shinichi Nagano, Masumi Inaba, Y. Mizoguchi, Takahiro Kawamura\",\"doi\":\"10.1609/icwsm.v2i1.18656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new algorithm of associated topic extraction, which detects related topics in a collection of blog entries commenting on a specified topic. The main feature of the algorithm is to evaluate how important a topic is to the collection, according to the popularity of blog entries through Trackbacks and comments. Another feature is to utilize product ontology for excluding unrelated topics. Evaluation results show that the proposed algorithm can capture users' impressions of associated topics more accurately than TF-IDF.\",\"PeriodicalId\":338112,\"journal\":{\"name\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v2i1.18656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v2i1.18656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的关联主题提取算法,该算法从评论特定主题的博客条目集合中检测出相关主题。该算法的主要特点是根据trackback和评论中博客条目的受欢迎程度来评估主题对集合的重要性。另一个特点是利用产品本体排除不相关的主题。评估结果表明,该算法能比TF-IDF更准确地捕获用户对相关主题的印象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of Topical Consumer Products from Weblogs
This paper proposes a new algorithm of associated topic extraction, which detects related topics in a collection of blog entries commenting on a specified topic. The main feature of the algorithm is to evaluate how important a topic is to the collection, according to the popularity of blog entries through Trackbacks and comments. Another feature is to utilize product ontology for excluding unrelated topics. Evaluation results show that the proposed algorithm can capture users' impressions of associated topics more accurately than TF-IDF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信