非线性Katugampola分数阶微分方程解的存在唯一性

Bilal Basti, Y. Arioua, N. Benhamidouche
{"title":"非线性Katugampola分数阶微分方程解的存在唯一性","authors":"Bilal Basti, Y. Arioua, N. Benhamidouche","doi":"10.7862/rf.2019.3","DOIUrl":null,"url":null,"abstract":"The present paper deals with the existence and uniqueness of solutions for a boundary value problem of nonlinear fractional differential equations with Katugampola fractional derivative. The main results are proved by means of Guo-Krasnoselskii and Banach fixed point theorems. For applications purposes, some examples are provided to demonstrate the usefulness of our main results. AMS Subject Classification: 34A08, 34A37.","PeriodicalId":345762,"journal":{"name":"Journal of Mathematics and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Existence and Uniqueness of Solutions for Nonlinear Katugampola Fractional Differential Equations\",\"authors\":\"Bilal Basti, Y. Arioua, N. Benhamidouche\",\"doi\":\"10.7862/rf.2019.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper deals with the existence and uniqueness of solutions for a boundary value problem of nonlinear fractional differential equations with Katugampola fractional derivative. The main results are proved by means of Guo-Krasnoselskii and Banach fixed point theorems. For applications purposes, some examples are provided to demonstrate the usefulness of our main results. AMS Subject Classification: 34A08, 34A37.\",\"PeriodicalId\":345762,\"journal\":{\"name\":\"Journal of Mathematics and Applications\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7862/rf.2019.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/rf.2019.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究一类具有Katugampola分数阶导数的非线性分数阶微分方程边值问题解的存在唯一性。利用Guo-Krasnoselskii不动点定理和Banach不动点定理证明了本文的主要结果。出于应用目的,提供了一些示例来演示我们的主要结果的有用性。学科分类:34A08、34A37。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Uniqueness of Solutions for Nonlinear Katugampola Fractional Differential Equations
The present paper deals with the existence and uniqueness of solutions for a boundary value problem of nonlinear fractional differential equations with Katugampola fractional derivative. The main results are proved by means of Guo-Krasnoselskii and Banach fixed point theorems. For applications purposes, some examples are provided to demonstrate the usefulness of our main results. AMS Subject Classification: 34A08, 34A37.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信