测试人工智能算法的数据框架,为高数据速率x射线设施做准备

Hongwei Chen, Sathya R. Chitturi, Rajan Plumley, L. Shen, Nathan C. Drucker, N. Burdet, Cheng Peng, Sougata Mardanya, D. Ratner, A. Mishra, C. Yoon, Sanghoon Song, M. Chollet, G. Fabbris, Mike Dunne, S. Nelson, Mingda Li, A. Lindenberg, Chunjing Jia, Y. Nashed, A. Bansil, Sugata Chowdhury, A. Feiguin, J. Turner, Jana Thayer
{"title":"测试人工智能算法的数据框架,为高数据速率x射线设施做准备","authors":"Hongwei Chen, Sathya R. Chitturi, Rajan Plumley, L. Shen, Nathan C. Drucker, N. Burdet, Cheng Peng, Sougata Mardanya, D. Ratner, A. Mishra, C. Yoon, Sanghoon Song, M. Chollet, G. Fabbris, Mike Dunne, S. Nelson, Mingda Li, A. Lindenberg, Chunjing Jia, Y. Nashed, A. Bansil, Sugata Chowdhury, A. Feiguin, J. Turner, Jana Thayer","doi":"10.1109/XLOOP56614.2022.00006","DOIUrl":null,"url":null,"abstract":"The advent of next-generation X-ray free electron lasers will be capable of delivering X-rays at a repetition rate approaching 1 MHz continuously. This will require the development of data systems to handle experiments at these type of facilities, especially for high throughput applications, such as femtosecond X-ray crystallography and X-ray photon fluctuation spectroscopy.Here, we demonstrate a framework which captures single shot X-ray data at the LCLS and implements a machine-learning algorithm to automatically extract the contrast parameter from the collected data. We measure the time required to return the results and assess the feasibility of using this framework at high data volume. We use this experiment to determine the feasibility of solutions for ‘live’ data analysis at the MHz repetition rate.","PeriodicalId":401106,"journal":{"name":"2022 4th Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP)","volume":"696 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Testing the data framework for an AI algorithm in preparation for high data rate X-ray facilities\",\"authors\":\"Hongwei Chen, Sathya R. Chitturi, Rajan Plumley, L. Shen, Nathan C. Drucker, N. Burdet, Cheng Peng, Sougata Mardanya, D. Ratner, A. Mishra, C. Yoon, Sanghoon Song, M. Chollet, G. Fabbris, Mike Dunne, S. Nelson, Mingda Li, A. Lindenberg, Chunjing Jia, Y. Nashed, A. Bansil, Sugata Chowdhury, A. Feiguin, J. Turner, Jana Thayer\",\"doi\":\"10.1109/XLOOP56614.2022.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of next-generation X-ray free electron lasers will be capable of delivering X-rays at a repetition rate approaching 1 MHz continuously. This will require the development of data systems to handle experiments at these type of facilities, especially for high throughput applications, such as femtosecond X-ray crystallography and X-ray photon fluctuation spectroscopy.Here, we demonstrate a framework which captures single shot X-ray data at the LCLS and implements a machine-learning algorithm to automatically extract the contrast parameter from the collected data. We measure the time required to return the results and assess the feasibility of using this framework at high data volume. We use this experiment to determine the feasibility of solutions for ‘live’ data analysis at the MHz repetition rate.\",\"PeriodicalId\":401106,\"journal\":{\"name\":\"2022 4th Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP)\",\"volume\":\"696 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/XLOOP56614.2022.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/XLOOP56614.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

下一代x射线自由电子激光器的出现将能够以接近1mhz的重复率连续发送x射线。这将需要开发数据系统来处理这些类型设施的实验,特别是对于高通量应用,如飞秒x射线晶体学和x射线光子波动光谱。在这里,我们展示了一个框架,它在LCLS上捕获单次x射线数据,并实现了一个机器学习算法,从收集的数据中自动提取对比度参数。我们测量返回结果所需的时间,并评估在高数据量下使用此框架的可行性。我们使用此实验来确定在MHz重复率下“实时”数据分析解决方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing the data framework for an AI algorithm in preparation for high data rate X-ray facilities
The advent of next-generation X-ray free electron lasers will be capable of delivering X-rays at a repetition rate approaching 1 MHz continuously. This will require the development of data systems to handle experiments at these type of facilities, especially for high throughput applications, such as femtosecond X-ray crystallography and X-ray photon fluctuation spectroscopy.Here, we demonstrate a framework which captures single shot X-ray data at the LCLS and implements a machine-learning algorithm to automatically extract the contrast parameter from the collected data. We measure the time required to return the results and assess the feasibility of using this framework at high data volume. We use this experiment to determine the feasibility of solutions for ‘live’ data analysis at the MHz repetition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信