存在碰撞故障时的异步凸壳共识

Lewis Tseng, N. Vaidya
{"title":"存在碰撞故障时的异步凸壳共识","authors":"Lewis Tseng, N. Vaidya","doi":"10.1145/2611462.2611470","DOIUrl":null,"url":null,"abstract":"This paper defines a new consensus problem, convex hull consensus. The input at each process is a d-dimensional vector of reals (or, equivalently, a point in the d-dimensional Euclidean space), and the output at each process is a convex polytope contained within the convex hull of the inputs at the fault-free processes. We explore the convex hull consensus problem under crash faults with incorrect inputs, and present an asynchronous approximate convex hull consensus algorithm with optimal fault tolerance that reaches consensus on an optimal output polytope. Convex hull consensus can be used to solve other related problems. For instance, a solution for convex hull consensus trivially yields a solution for vector (multidimensional) consensus. More importantly, convex hull consensus can potentially be used to solve other more interesting problems, such as function optimization.","PeriodicalId":186800,"journal":{"name":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Asynchronous convex hull consensus in the presence of crash faults\",\"authors\":\"Lewis Tseng, N. Vaidya\",\"doi\":\"10.1145/2611462.2611470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper defines a new consensus problem, convex hull consensus. The input at each process is a d-dimensional vector of reals (or, equivalently, a point in the d-dimensional Euclidean space), and the output at each process is a convex polytope contained within the convex hull of the inputs at the fault-free processes. We explore the convex hull consensus problem under crash faults with incorrect inputs, and present an asynchronous approximate convex hull consensus algorithm with optimal fault tolerance that reaches consensus on an optimal output polytope. Convex hull consensus can be used to solve other related problems. For instance, a solution for convex hull consensus trivially yields a solution for vector (multidimensional) consensus. More importantly, convex hull consensus can potentially be used to solve other more interesting problems, such as function optimization.\",\"PeriodicalId\":186800,\"journal\":{\"name\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611462.2611470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611462.2611470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文定义了一个新的共识问题——凸包共识。每个过程的输入是一个实数的d维向量(或者,等价地,d维欧几里德空间中的一个点),每个过程的输出是一个凸多面体,包含在无故障过程的输入的凸包中。研究了输入不正确的崩溃故障下的凸壳共识问题,提出了一种具有最优容错的异步近似凸壳共识算法,该算法在最优输出多面体上达成共识。凸包共识可用于解决其他相关问题。例如,凸壳共识的解决方案通常会产生向量(多维)共识的解决方案。更重要的是,凸壳共识可以潜在地用于解决其他更有趣的问题,例如函数优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asynchronous convex hull consensus in the presence of crash faults
This paper defines a new consensus problem, convex hull consensus. The input at each process is a d-dimensional vector of reals (or, equivalently, a point in the d-dimensional Euclidean space), and the output at each process is a convex polytope contained within the convex hull of the inputs at the fault-free processes. We explore the convex hull consensus problem under crash faults with incorrect inputs, and present an asynchronous approximate convex hull consensus algorithm with optimal fault tolerance that reaches consensus on an optimal output polytope. Convex hull consensus can be used to solve other related problems. For instance, a solution for convex hull consensus trivially yields a solution for vector (multidimensional) consensus. More importantly, convex hull consensus can potentially be used to solve other more interesting problems, such as function optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信