Mitchell Joblin, W. Mauerer, S. Apel, J. Siegmund, D. Riehle
{"title":"从开发人员网络到验证社区:细粒度方法","authors":"Mitchell Joblin, W. Mauerer, S. Apel, J. Siegmund, D. Riehle","doi":"10.1109/ICSE.2015.73","DOIUrl":null,"url":null,"abstract":"Effective software engineering demands a coordinated effort. Unfortunately, a comprehensive view on developer coordination is rarely available to support software-engineering decisions, despite the significant implications on software quality, software architecture, and developer productivity. We present a fine-grained, verifiable, and fully automated approach to capture a view on developer coordination, based on commit information and source-code structure, mined from version-control systems. We apply methodology from network analysis and machine learning to identify developer communities automatically. Compared to previous work, our approach is fine-grained, and identifies statistically significant communities using order-statistics and a community-verification technique based on graph conductance. To demonstrate the scalability and generality of our approach, we analyze ten open-source projects with complex and active histories, written in various programming languages. By surveying 53 open-source developers from the ten projects, we validate the authenticity of inferred community structure with respect to reality. Our results indicate that developers of open-source projects form statistically significant community structures and this particular view on collaboration largely coincides with developers' perceptions of real-world collaboration.","PeriodicalId":330487,"journal":{"name":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"From Developer Networks to Verified Communities: A Fine-Grained Approach\",\"authors\":\"Mitchell Joblin, W. Mauerer, S. Apel, J. Siegmund, D. Riehle\",\"doi\":\"10.1109/ICSE.2015.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective software engineering demands a coordinated effort. Unfortunately, a comprehensive view on developer coordination is rarely available to support software-engineering decisions, despite the significant implications on software quality, software architecture, and developer productivity. We present a fine-grained, verifiable, and fully automated approach to capture a view on developer coordination, based on commit information and source-code structure, mined from version-control systems. We apply methodology from network analysis and machine learning to identify developer communities automatically. Compared to previous work, our approach is fine-grained, and identifies statistically significant communities using order-statistics and a community-verification technique based on graph conductance. To demonstrate the scalability and generality of our approach, we analyze ten open-source projects with complex and active histories, written in various programming languages. By surveying 53 open-source developers from the ten projects, we validate the authenticity of inferred community structure with respect to reality. Our results indicate that developers of open-source projects form statistically significant community structures and this particular view on collaboration largely coincides with developers' perceptions of real-world collaboration.\",\"PeriodicalId\":330487,\"journal\":{\"name\":\"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2015.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2015.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Developer Networks to Verified Communities: A Fine-Grained Approach
Effective software engineering demands a coordinated effort. Unfortunately, a comprehensive view on developer coordination is rarely available to support software-engineering decisions, despite the significant implications on software quality, software architecture, and developer productivity. We present a fine-grained, verifiable, and fully automated approach to capture a view on developer coordination, based on commit information and source-code structure, mined from version-control systems. We apply methodology from network analysis and machine learning to identify developer communities automatically. Compared to previous work, our approach is fine-grained, and identifies statistically significant communities using order-statistics and a community-verification technique based on graph conductance. To demonstrate the scalability and generality of our approach, we analyze ten open-source projects with complex and active histories, written in various programming languages. By surveying 53 open-source developers from the ten projects, we validate the authenticity of inferred community structure with respect to reality. Our results indicate that developers of open-source projects form statistically significant community structures and this particular view on collaboration largely coincides with developers' perceptions of real-world collaboration.