{"title":"$ $ (frac系列的事态发展(1)(2)a_0 + \\ sum \\ limits_1 ^ \\ infty (lambda (a_n \\ cos x + b_n _n sen的lambda _n x) $ $在那里trascendenteF方程的根(λn z) cosπz = 0。","authors":"Ulisse Dini","doi":"10.1007/BF02679745","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":138771,"journal":{"name":"Annali di Matematica Pura ed Applicata (1898-1922)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1917-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sugli sviluppi in serie\\n$$\\\\frac{1}{2}a_0 + \\\\sum\\\\limits_1^\\\\infty {(a_n \\\\cos \\\\lambda _n x + b_n sen\\\\lambda _n x)} $$\\n dove le λn sono radici della equazione trascendenteF(z)cos π z=0.\",\"authors\":\"Ulisse Dini\",\"doi\":\"10.1007/BF02679745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":138771,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata (1898-1922)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1917-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata (1898-1922)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02679745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata (1898-1922)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02679745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sugli sviluppi in serie
$$\frac{1}{2}a_0 + \sum\limits_1^\infty {(a_n \cos \lambda _n x + b_n sen\lambda _n x)} $$
dove le λn sono radici della equazione trascendenteF(z)cos π z=0.