{"title":"基于全新高质量基线气候学面1952 - 2019年中国1公里月降水气温数据集","authors":"Haibo Gong, Xueqiao Xiang, Huiyu Liu, Xiaojuan Xu, Fusheng Jiao, Zhen-shan Lin","doi":"10.5194/ESSD-2020-361","DOIUrl":null,"url":null,"abstract":"Abstract. Long-term climate data and high-quality baseline climatology surface with high resolution are highly essential to multiple fields in climatological, ecological, hydrological, and environmental sciences. Here, we created a brand-new baseline climatology surface (ChinaClim_baseline) and developed a 1 km monthly precipitation and temperatures dataset in China during 1952–2019 (ChinaClim_timeseries). Thin plate spline (TPS) algorithm in each month with different model formulations by accounting for satellite-driven products, was used to generate ChinaClim_baseline and monthly climate anomaly surface. Meanwhile, climatologically aided interpolation (CAI) was used to superimpose monthly anomaly surface with ChinaClim_baseline to generate ChinaClim_timeseries. Our results showed that ChinaClim_baseline exhibited very high performance. For precipitation estimation, the value of all R2 was over 0.860, and the values of RMSEs and MAEs were 8.149 mm~21.959 mm and 2.787~14.125 mm, respectively. Temperature elements had an average R2 of 0.967~0.992, an average MAEs of 0.321~0.785 °C, and an average RMSEs between 0.485 and 1.233 °C for all months. ChinaClim_baseline performed much better than WorldClim2 and CHELSA and there were many spatial discrepancies captured among those surfaces, especially in summer months and the regions with low-density weather stations in temperate continental and high cold Tibetan Plateau. For ChinaClim_timeseries, precipitation had an average R2 of 0.699~0.923, an average RMSE between 7.449 mm and 56.756 mm, and an average of MAE of 4.263~40.271 mm for all months. Temperature elements had an average R2 of 0.936~0.985, an average RMSE between 0.807 °C and 1.766 °C, and an average MAE of 0.548~1.236 °C for all months. Compared with Peng's climate surface and CHELSAcruts, R2 increased by approximately 6 %, RMSE and MAE decreased by approximately 15 % for precipitation; R2 of temperatures had no obviously changes, but RMSE and MAE decreased by 8.37~34.02 %. The results showed that the interannual variations of ChinaClim_timeseries performed much better than other datasets, thanks to the help of ChinaClim_baseline and satellite-driven products. However, ChinaClim_baseline did not significantly improve the accuracy of precipitation estimation, but it greatly improved the accuracy of temperature estimation; the satellite-driven TRMM3B43 anomaly greatly improve the accuracy of precipitation estimation after 1998, while the LST anomaly did not effectively improve the accuracy of temperature estimation. ChinaClim_baseline can be used as an excellent baseline climatology surface for obtaining high-quality and long-term climate datasets from past to future. In the meantime, ChinaClim_timeseries of 1 km spatial resolution based on ChinaClim_baseline, is very suitable for investigating the spatial-temporal climate changes and their impacts on eco-environmental systems in China. Here, ChinaClim_baseline is available at https://doi.org/10.5281/zenodo.4287824 (Gong, 2020a), ChinaClim_timeseries of precipitation is available at https://doi.org/10.5281/zenodo.4288388 (Gong, 2020b), ChinaClim_timeseries of maximum temperature is available at https://doi.org/10.5281/zenodo.4288390 (Gong, 2020c) and ChinaClim_timeseries of minimum temperature is available at https://doi.org/10.5281/zenodo.4288392 (Gong, 2020d).\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"1 km Monthly Precipitation and Temperatures Dataset for China from 1952 to 2019 based on a Brand-New and High-Quality Baseline Climatology Surface\",\"authors\":\"Haibo Gong, Xueqiao Xiang, Huiyu Liu, Xiaojuan Xu, Fusheng Jiao, Zhen-shan Lin\",\"doi\":\"10.5194/ESSD-2020-361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Long-term climate data and high-quality baseline climatology surface with high resolution are highly essential to multiple fields in climatological, ecological, hydrological, and environmental sciences. Here, we created a brand-new baseline climatology surface (ChinaClim_baseline) and developed a 1 km monthly precipitation and temperatures dataset in China during 1952–2019 (ChinaClim_timeseries). Thin plate spline (TPS) algorithm in each month with different model formulations by accounting for satellite-driven products, was used to generate ChinaClim_baseline and monthly climate anomaly surface. Meanwhile, climatologically aided interpolation (CAI) was used to superimpose monthly anomaly surface with ChinaClim_baseline to generate ChinaClim_timeseries. Our results showed that ChinaClim_baseline exhibited very high performance. For precipitation estimation, the value of all R2 was over 0.860, and the values of RMSEs and MAEs were 8.149 mm~21.959 mm and 2.787~14.125 mm, respectively. Temperature elements had an average R2 of 0.967~0.992, an average MAEs of 0.321~0.785 °C, and an average RMSEs between 0.485 and 1.233 °C for all months. ChinaClim_baseline performed much better than WorldClim2 and CHELSA and there were many spatial discrepancies captured among those surfaces, especially in summer months and the regions with low-density weather stations in temperate continental and high cold Tibetan Plateau. For ChinaClim_timeseries, precipitation had an average R2 of 0.699~0.923, an average RMSE between 7.449 mm and 56.756 mm, and an average of MAE of 4.263~40.271 mm for all months. Temperature elements had an average R2 of 0.936~0.985, an average RMSE between 0.807 °C and 1.766 °C, and an average MAE of 0.548~1.236 °C for all months. Compared with Peng's climate surface and CHELSAcruts, R2 increased by approximately 6 %, RMSE and MAE decreased by approximately 15 % for precipitation; R2 of temperatures had no obviously changes, but RMSE and MAE decreased by 8.37~34.02 %. The results showed that the interannual variations of ChinaClim_timeseries performed much better than other datasets, thanks to the help of ChinaClim_baseline and satellite-driven products. However, ChinaClim_baseline did not significantly improve the accuracy of precipitation estimation, but it greatly improved the accuracy of temperature estimation; the satellite-driven TRMM3B43 anomaly greatly improve the accuracy of precipitation estimation after 1998, while the LST anomaly did not effectively improve the accuracy of temperature estimation. ChinaClim_baseline can be used as an excellent baseline climatology surface for obtaining high-quality and long-term climate datasets from past to future. In the meantime, ChinaClim_timeseries of 1 km spatial resolution based on ChinaClim_baseline, is very suitable for investigating the spatial-temporal climate changes and their impacts on eco-environmental systems in China. Here, ChinaClim_baseline is available at https://doi.org/10.5281/zenodo.4287824 (Gong, 2020a), ChinaClim_timeseries of precipitation is available at https://doi.org/10.5281/zenodo.4288388 (Gong, 2020b), ChinaClim_timeseries of maximum temperature is available at https://doi.org/10.5281/zenodo.4288390 (Gong, 2020c) and ChinaClim_timeseries of minimum temperature is available at https://doi.org/10.5281/zenodo.4288392 (Gong, 2020d).\\n\",\"PeriodicalId\":326085,\"journal\":{\"name\":\"Earth System Science Data Discussions\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/ESSD-2020-361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ESSD-2020-361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
1 km Monthly Precipitation and Temperatures Dataset for China from 1952 to 2019 based on a Brand-New and High-Quality Baseline Climatology Surface
Abstract. Long-term climate data and high-quality baseline climatology surface with high resolution are highly essential to multiple fields in climatological, ecological, hydrological, and environmental sciences. Here, we created a brand-new baseline climatology surface (ChinaClim_baseline) and developed a 1 km monthly precipitation and temperatures dataset in China during 1952–2019 (ChinaClim_timeseries). Thin plate spline (TPS) algorithm in each month with different model formulations by accounting for satellite-driven products, was used to generate ChinaClim_baseline and monthly climate anomaly surface. Meanwhile, climatologically aided interpolation (CAI) was used to superimpose monthly anomaly surface with ChinaClim_baseline to generate ChinaClim_timeseries. Our results showed that ChinaClim_baseline exhibited very high performance. For precipitation estimation, the value of all R2 was over 0.860, and the values of RMSEs and MAEs were 8.149 mm~21.959 mm and 2.787~14.125 mm, respectively. Temperature elements had an average R2 of 0.967~0.992, an average MAEs of 0.321~0.785 °C, and an average RMSEs between 0.485 and 1.233 °C for all months. ChinaClim_baseline performed much better than WorldClim2 and CHELSA and there were many spatial discrepancies captured among those surfaces, especially in summer months and the regions with low-density weather stations in temperate continental and high cold Tibetan Plateau. For ChinaClim_timeseries, precipitation had an average R2 of 0.699~0.923, an average RMSE between 7.449 mm and 56.756 mm, and an average of MAE of 4.263~40.271 mm for all months. Temperature elements had an average R2 of 0.936~0.985, an average RMSE between 0.807 °C and 1.766 °C, and an average MAE of 0.548~1.236 °C for all months. Compared with Peng's climate surface and CHELSAcruts, R2 increased by approximately 6 %, RMSE and MAE decreased by approximately 15 % for precipitation; R2 of temperatures had no obviously changes, but RMSE and MAE decreased by 8.37~34.02 %. The results showed that the interannual variations of ChinaClim_timeseries performed much better than other datasets, thanks to the help of ChinaClim_baseline and satellite-driven products. However, ChinaClim_baseline did not significantly improve the accuracy of precipitation estimation, but it greatly improved the accuracy of temperature estimation; the satellite-driven TRMM3B43 anomaly greatly improve the accuracy of precipitation estimation after 1998, while the LST anomaly did not effectively improve the accuracy of temperature estimation. ChinaClim_baseline can be used as an excellent baseline climatology surface for obtaining high-quality and long-term climate datasets from past to future. In the meantime, ChinaClim_timeseries of 1 km spatial resolution based on ChinaClim_baseline, is very suitable for investigating the spatial-temporal climate changes and their impacts on eco-environmental systems in China. Here, ChinaClim_baseline is available at https://doi.org/10.5281/zenodo.4287824 (Gong, 2020a), ChinaClim_timeseries of precipitation is available at https://doi.org/10.5281/zenodo.4288388 (Gong, 2020b), ChinaClim_timeseries of maximum temperature is available at https://doi.org/10.5281/zenodo.4288390 (Gong, 2020c) and ChinaClim_timeseries of minimum temperature is available at https://doi.org/10.5281/zenodo.4288392 (Gong, 2020d).